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Physics 558 – Lecture 23

The Standard Model of the Electroweak Interactions Revisited – The Feynman Rules

To effectively summarize what we have learned so far about the electroweak
interactions of the leptons let us discuss the Feynman rules for the interaction vertices
in this theory that arise from the Lagrangian discussed in Lecture 22. Recall that we
can obtain the interaction vertices by considering the terms in the quantity iL that are
cubic, and higher, in the fields.

First consider the vertices describing the interaction of the matter fermions with the
gauge bosons. From expanding the Lagrangian for the lepton with the correct
definition of the Z and A fields we found in the last lecture that the neutral current
sector looks like
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Thus the electron couples to the photon via the vertex in the figure, which we have
already seen, and which has the form

.eiQ e e A iee e AP P
P PJ J�  (23.2)

We can similarly read off the corresponding coupling to the Z (the neutral weak
interaction) and find the following vertex,
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The corresponding coupling of the Z to neutrinos is the following,
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The charged current vertex, which we have discussed already last quarter, arises from
the charged current part of the Lagrangian that we introduced in Lecture 22, Eq.
(22.33)
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This yields the following vertices
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and the conjugate process
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In comparing the Z and W vertices, note the missing factor of 1 2 and the
substitution 2 2

Z WM Mo (the factor of cos TW).

Next consider the various couplings between the gauge bosons themselves. These
arise from the cubic and quartic terms in the original SU(2)L gauge Lagrangian,

,1
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k kF F PQ
PQ� , where l l l lmn m nF W W g W WPQ P Q Q P P QH w � w � . Thus the generic cubic term

looks like (there is a factor of 4 in the numerator from the 2 in the cross term and the
2 from the two terms in the curl)
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We can define all the momenta as incoming so that k k kW iq WP Q P Qw o � , with kqP the
(incoming) momentum of vector boson with SU(2) index k (klm must all be different
due to the antisymmetric structure constant Hklm). There are 3! or 6 terms or coupling
structures that we find when expanding out this antisymmetric product. We can write
(all momenta defined as incoming)
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To get to “physically” relevant vertices we must project W1 andW2 onto W+ andW-

and W3 onto Z and A. Recall that, since the final photon is a mixture, including a
component from the original non-Abelian SU(2) theory, it also participates in the
“non-Abelian-like” couplings. The former projection introduces a factor of i, while
the latter introduces factors of cosTW and sinTW, respectively.
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The photon couples to a W boson pair in the following way. The arrows indicate the
assumed flow of momentum for the definition given. We find the following form
(the sign is the hard part, depending on definitions of incoming versus outgoing states
and many different expressions are provided in the literature),
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Recall that the coupling for the A vertex can also be written as sin Wg eT  , i.e., the
charge of the W is e. The corresponding vertex with the photon replaced by a Z
differs simply by changing sinTW to cosTW, (the other component of W3)
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Note that the coupling can also be written cos cotW Wg eT T .

Next we come to the quartic couplings of the gauge bosons. These arise from the
square of the purely non-Abelian term in the field strength tensor. The generic form
is
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With 4 formally identical fields (members of the same multiplet), there are 4! ways to
construct this product. Of these, only 6 are actually distinct (canceling the factor of 4
in the denominator) and we can write
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Due to the antisymmetric group factor, at most two of the coupled bosons can be of
the same type. Thus there are 2 possibilities, W1W3W2W3 andW1W2W1W2, yielding 4
physically distinct cases, W+W-AA, W+W-AZ, W+W-ZZ and W+W-W+W-. As a result
only 4 of the six terms contribute and 2 of these are identical (see below). As we did
with the cubic vertex we must project onto the physical states. First consider the
W+W-AA vertex, where again we define all bosons as incoming
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where 2 2 2sin Wg eT  .

The W+W-AZ vertex looks like ( 2 2sin cos cotW W Wg eT T T )
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For the W+W-ZZ andW+W-W+W- vertices we have
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where 2 2 2 2cos cotW Wg eT T , and
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where 2 2 2sin Wg e T .

Finally we want to consider the couplings of the scalar Higgs boson. Due to the
purely Higgs part of the Lagrangian, the Higgs boson has both a cubic and a quartic
coupling from the expansion of the term � �

4
v 2hO ª º� �¬ ¼ . In this case the n! factor,

due to all the ways the n identical bosons can be identified with the external particles,
is explicit. Thus the cubic term has a factor of 4 in the denominator from the 2
normalization factor, a factor 4 in the numerator from the expansion of the quartic
polynomial and the 3! factor to yield,

26 v 3 2 .h Fi hhh im G hhhO�  � (23.18)

The corresponding quartic terms has no extra factor of 4 from the expansion but the
symmetry factor is now 4! to yield,
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26 3 2 .h Fi hhhh im G hhhhO�  � (23.19)

As we noted in the last lecture, since the coupling of fermions to the scalar vacuum
expectation value via the Yukawa term provides the mass of the fermion, the
coupling of a fermion to the physical Higgs particle is proportional to the fermion’s
mass. The vertex has the general form

2 .
v
f

f F

m
i f f im G f f�  � (23.20)

The coupling of the original scalar doublet to the gauge bosons means that the
physical Higgs boson also should have such couplings. We can read these terms off
by returning to the terms in the Higgs Lagrangian of Lecture 22 that gave masses to
the vector bosons and replacing v by v + h,
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Thus we have couplings of a single Higgs boson to pairs of both the W’s and the Z.
Noting that the twoW terms both contribute to the same vertex and the Z vertex has a
2! identical particle factor, we find
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and
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These vertices are written for an incoming Higgs and outgoing vector bosons but they
are essentially the same if the vector bosons are incoming (only the †goes away).

Finally the h2 term yields quartic couplings between Higgs pairs and vector bosons
pairs. These have the form (with the extra 2! for the identical Higgs bosons)
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and
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In the next lecture we will return to the question of calculating with these Feynman
rules.

For completeness let us restate here also the forms of the relevant propagators:
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