## Lecture 2: Selected Powerpoint Slides



# The Cosmic Scale Factor (R)

The redshift of distant galaxies is produced by the *expansion of space*, NOT the motion of galaxies *through space*.



Scale factor (*R*): A measure of the size of the universe as a function of time. It can be thought of as the ratio of the average separation of, e.g., galaxies, compared with the present separation. (Note:  $R_0 = 1.0$ )



# Cosmology in 5 Easy Pieces

- Cosmology with Newton
- The Cosmic Microwave Background and the Early Universe.
- Cosmology with Einstein: General Relativity and the Cosmological Constant
- Observational Cosmology: The Supernova Result
- The (Very) Early Universe

# **Introducing the Dust-Filled Universe**





#### **The Friedmann Equation**

(1) 
$$\left[\left(\frac{\dot{R}}{R}\right)^2 - \frac{8\pi G\rho}{3}\right]R^2 = -kc^2$$
(2) 
$$\left[H^2 - \frac{8\pi G\rho}{3}\right]R^2 = -kc^2$$

k determines the fate of the Universe:

- k > 0: Total energy negative, will recollapse. Universe is "bounded and closed".
- k < 0: Total energy positive, will expand forever. Universe is "unbounded and open".
- k = 0: Total energy zero. Expansion slows to 0 as t approaches infinity. Universe is "flat".

Since  $R^3 \rho = \rho_0$ , eq. (1) can be rewritten:

(3) 
$$\dot{R}^2 - \frac{8\pi G\rho_0}{3R} = -kc^2$$

Setting *k* = 0 in the Friedmann equation (2) yields:



### Critical Density ( $\rho_{\rm c}$ )

The density of matter that would allow the universe to expand forever, but at a rate that would decrease to zero at infinite time.

Setting *k* = 0 in the Friedmann equation yields:



#### **Density Parameter**

The ratio of a measured density to the critical density.



#### **Two Ways to Determine the Fate of the Universe**

1) Count up the mass, to determine the average density.

By 1997, "darn close" to critical universe (i.e., within factor of 4).

#### <u>Relations for a Flat Universe (Matter Only)</u>

 $R = \left(\frac{3}{2}\right)^{2/3} \left(\frac{t}{t_H}\right)^{2/3}$ 

Scale factor:

Age:



Lookback time:

 $t_L = \frac{2}{3} t_H \left( 1 - \frac{1}{(1+z)^{3/2}} \right)$ 

# Evolution of the Scale Factor (matter only)

 $\Omega_0 = 0.5$ 





## How H and Ω Vary with Redshift

$$H = H_0 (1+z)(1+\Omega_0 z)^{1/2}$$

2

$$\Omega = 1 + \frac{\Omega_0 - 1}{1 + \Omega_0 z}$$
$$\Omega - 1 = \frac{\Omega_0 - 1}{1 + \Omega_0 z}$$



When only the gravity of pressureless matter acts, the *geometry* and *fate* of the Universe are directly linked.

#### Astronomy 660 Toolkit

## **Relativistic Energy**

• Total relativistic energy of a massive particle:

$$E = \frac{mc^2}{\sqrt{1 - v^2/c^2}}$$

• General equation for total relativistic energy of *any* particle (massive or massless):

$$E^2 = p^2 c^2 + m^2 c^4$$

> For photons:

$$E = h\upsilon = \frac{hc}{\lambda} = pc$$

Both the energy of photons and the kinetic energy of massive particles contribute to the gravity of the universe (along with the mass of massive particles).

**Note:** "Equivalent mass density",  $\rho$ , for any form of energy with energy density *u*, is just  $\frac{u}{2}$ .

# **First Law of Thermodynamics**

A statement of the *conservation* of *energy*: The increase in the internal energy of a thermodynamic system is equal to the amount of heat energy added to the system minus the work done by the system on the surroundings.

$$dU = dQ - dW$$

dU: change in internal energy

dQ: heat flow into (positive) or out of (negative) the system dW: work done by (positive) or on (negative) the system

$$dU = dQ - PdV$$

For expanding universe, dQ = 0 (adiabatic), so:

$$dU = -PdV$$