That Spin 0 Boson Changes Everything

The Standard Model and the Energy Frontier

Department of Physics Colloquium Case Western Reserve University

October 24, 2019

Chip Brock

That Spin 0 Boson Changes Everything

The Standard Model and the Energy Frontier

Department of Physics Colloquium Case Western Reserve University

That Spin O Boson Changes Everything

The Standard Model and the Energy Frontier

Department of Physics Colloquium Case Western Reserve University

Octob,2019

Chip Brock

MICHIGAN STATE

 R. Takashima ${ }^{68}$, H. Takeda a^{66}, T. Takeshita ${ }^{141}$, Y. Takubo ${ }^{6}$
K.G. Tan ${ }^{87}$, J. Tanaka ${ }^{156}$, R. Tanaka ${ }^{116}$, S. Tanaka ${ }^{132}$, S.

 P. Thompson ${ }^{18}$, PD. Thompson ${ }^{159}$, R1. The Pe ${ }^{83}$ M. Thomson ${ }^{28}$, W.M. Thong ${ }^{88}$, R.P. Thum 8 ss,-, F. Tian ${ }^{35}$, Yu.A. Tikhonovo $108, c$, S. Timoshenko ${ }^{97}$, E. Tiouchichine ${ }^{\text {sid }}$ S. Todorova-Nova ${ }^{128}$, B. Toggerson ${ }^{7}$, J. Toj ${ }^{69}$, S. Tokár ${ }^{1}{ }^{1}$
Tomlinson L. Tomlinson ${ }^{\text {² }}, \mathrm{M}$. Torró Pastor ${ }^{68}$
A. Tricolis ${ }^{30}, \mathrm{M} . \mathrm{M}$ I
M. Trottier-McDon
C. T. Tsiseng ${ }^{119}$, P

M. Ughetto ${ }^{84}$, M.

Vachon ${ }^{86}$, N. V
D. Puddu ${ }^{135 a, 135 b}$, E. Pu
. Quadt ${ }^{53}$ D.R. Quarrie . Rajagopopalan ${ }^{25}$, M. Ra T.C. Rave ${ }^{48}$, T. Ravensc A. Redellach ${ }^{175}$, G. Red R. Rezvanis, R. Richter . Recvani ${ }^{24}$, R. Richter Robinson ${ }^{28}$, J.E.M. R Rolli ${ }^{162}$, A. Romanioul
Ros
168, 'S. Rosatit Ros ${ }^{168}$, S. Rosatini3u, Roussetti ${ }^{116}$ C. R. Ro C. Rudolph ${ }^{44}$, M.S. Rud P. Rutherfoord ${ }^{7}$, N. Ru S. Sacerdoti ${ }^{27}$. A. S. Saddiq P.H. Sales De Bruin ${ }^{139}$, D . Salvucci ${ }^{105}$, A. Salzbui H. Sandaker ${ }^{14}$, R.L. Sand R. Sandstroem ${ }^{1001}$, D.P.P.C G. Sartisohn ${ }^{176}$, O. Sasa Sawyer 7 8, o, D.H. Saxo M. Scarcella ${ }^{\text {s51 }}$, V. Scarfo D. Scheirich ${ }^{128}$, M. Sche Schenker ${ }^{30}$, E. Schmi . Schnoor ${ }^{44}$, L. Schoeffe H.-C. Schultz-Coulon ${ }^{\text {Sse }}$. C. Schwartzman ${ }^{144}$, T.A . Schwind ${ }^{21}$, M. Schwo
 Serkin ${ }^{54}$,T. Serre ${ }^{54}$, 1. Shamimin ${ }^{115}$, L.Y. Shai C.Y. Shehehter ${ }^{150}$, P. Sherwo A. Shmeleva ${ }^{95}$, M.J. Sho . Siliverstein ${ }^{44}$, S.B. Sil B. Simmons ${ }^{7}$, R. Simoni A. Sircar ${ }^{78}$, A.N. Sisakyal K. Yu. Skovpen ${ }^{108}$, P. Sku K. Smolek ${ }^{127}$, A.A. Snes C.A. Solans ${ }^{30}, \mathrm{M}$. Solar 1 V. Sopko I. Spousta ${ }^{128}$, T. Spreit . Stamm ${ }^{16}$, E. Stanecka E.A. Starchenko ${ }^{129}$, J. St 1.C. Stockton ${ }^{56}$. M. Stoe

The AILAS Collaboration: Two-particle Bose-Einstein correlations
A.C. Florez Bustos ${ }^{160 b}$, M.J. . Flowerdew ${ }^{100}$, A. Formica ${ }^{137}$, A. Forti ${ }^{83}$, D. Fortini ${ }^{160 a}$, D. Fournier ${ }^{116}$, H. For ${ }^{71}$ S. Fracchia ${ }^{12}$, P. Francavilla ${ }^{79}$, M. Franchini ${ }^{200} 200$, S. Franchino ${ }^{30}$, D. Franci ${ }^{30}$, L. Franconi ${ }^{118}$, M. Franklin ${ }^{58}$

 L. Gauthier ${ }^{94}{ }^{9 / 4}$ P. Gauzzzi ${ }^{133 a, 1331}$, I.L. Gavrilenk ${ }^{95}$, C. Gay ${ }^{169}$, G. Gayckel
 B. Gibbard ${ }^{25}$, S.M. Gibson ${ }^{6}$, M. Gilchriese ${ }^{15}$, T.P.S. Giallam ${ }^{28}$, D. Gillbery D. Gugnison
C. Glasman

si , Ginulis Godlewski ${ }^{30}$, C. Go L.S. Gomen Fajardo ${ }^{22}$ | S. González de la la Hozz |
| :--- |
| H.A. Gordon |
| 25 . I. Gor | C. Gössling ${ }^{43}$, M.I. Go G. Gozpinar ${ }^{23}$ H.M.X J. Gramling ${ }^{99}$, E. Gra K. Grimm ${ }^{71}$, S. Grinst Gross ${ }^{173}$, J. Grosse I. Guenther ${ }^{127}$, F. Gue S. Guindon ${ }^{2}$, U. Gul ${ }^{\text {B3 }}$ H.K. Hadavand ${ }^{\text {8 }}$, N. H b. Hall ${ }^{199}$, G. Halladj S. Hamiltoti62, G.N. P. Hanke ${ }^{58 a}$, R. Hanna F. Hariri ${ }^{16,}$ S. Harkus R. Hauser sio M. Havra P. P. Hays ${ }^{119}$, H.S. Hay . Hellmich ${ }^{21}$, C. Hels A.M. Henriques Corre Herrberg-Schubert ${ }^{1}$ Higón-Rodriguez ${ }^{168}$ M. Hirose ${ }^{158}$, D. Hirsc L. Hooft van Huysduy Howard 119 , J. Howa C. Hsu

W. Hughes
D.
D.
G. Hu Huth ${ }^{\text {5 }}$, G. Iacobuce O. Igonkina ${ }^{106}$, T. Iiza Inamaru ${ }^{66}$ T. Ince . Isaksson ${ }^{167}$ M. Ishii P. Jackson ${ }^{1}$ M.R. Jae K.K. Jana ${ }^{78}$, E. Janse
 K.J. Jones ${ }^{73}$, J. Jong

The ATLAS Collaboration

The Atlas
M. Capua ${ }^{37,37 b}$, R. Caputs ${ }^{82}$, R. Carda E. Carquin ${ }^{322 \pi}$, G.D. Carrillo-Montoy ${ }^{142}$ A. Catinaccioion, J.R. Catmorere 118 , A. Ca M. Cavalli-Sforza ${ }^{12}$, V. Cavasinni ${ }^{1233,12}$ A. Cerri ${ }^{150}$, L. Cerrito ${ }^{75}$, F. Ceruttis, , I. Chalupkova ${ }^{128}$, P. Chang ${ }^{166}$, B. Chapl C.A. Chavez Barajas ${ }^{150}$, S. Cheatham ${ }^{15}$ M.A. Chelstowska ${ }^{28}$, C. Chen ${ }^{63,}$, H. Che Y. Chen ${ }^{35}$, H.C. Cheng ${ }^{88}$, Y. Cheng ${ }^{31}$, A A.S. Chisholm ${ }^{\text {is }}$, R.T. Chislett ${ }^{\text {t7, }}$ A. Ch

 A.P. Colijn ${ }^{106}$ J. Collot 55, T. Colombo ${ }^{5}$ M.C. Conidit ${ }^{12}$ S. S. Connell ${ }^{\text {i4ct }}$, I.A. Ce
 A. Cortes-Gonzalez ${ }^{\text {12 }}$, G. Cortiana ${ }^{100}$ A. Cortes-Gonzalez ${ }^{\text {G. }}$, Cowan ${ }^{76}$, B. Cortiana Cox ${ }^{83}$, K. Cranmer ${ }^{\text {1o9 }}$ M. Crispin Ortuzar ${ }^{119}$, M. Cristinziani ${ }^{21}$
T. Cuhadar Donszelmann ${ }^{140}$, J. Cummil
 W. Dabrowski ${ }^{\text {3san }}$, A. Dafinca ${ }^{119}$ T. Dai M. Dano Hoffmann ${ }^{137}$, V. Dao ${ }^{48}$, G. Da C. David ${ }^{177}$, T. Davidek ${ }^{122}$, E. Davies ${ }^{111}$
 S. De Pestris ${ }^{1332}$, A. De Salvo ${ }^{1333}$, U. De
D. De R. Debbe ${ }^{25}$, C. Debenedetti ${ }^{138}{ }^{\text {B }}$ B. Dech T. Del Prete ${ }^{123,12336}$, F. Deliot ${ }^{\text {t37 }}$, C.M. M. Dell'Orso ${ }^{123 a, 1236}$, M. Della Pietra ${ }^{10}$
S. Demers ${ }^{17}$, M. Demichev ${ }^{64}$ A. Demil P. Dervan ${ }^{73}$, K. Deschincher ${ }^{21}$ C. Deterre ${ }^{42}$, L. Di Ciaccio ${ }^{5}$. A. Di Domenico ${ }^{1333,133 b}$ A. Di. Dias ${ }^{66}$, M.A. Dinzan
 M.A.B. do Vale ${ }^{24 c}$, A. Do Valle Weman J. Dolejsisi ${ }^{128}$, Z. Dolcezan ${ }^{128}$, B.A. Dolgos J. Donini ${ }^{34}$, J. Dopke ${ }^{130}$, A. Doria ${ }^{1035}$, , L. Dugreuid ${ }^{76}$, M. Dührsseni ${ }^{30}$, M. Dunfor
 T. Ekelof ${ }^{167}$, M. El Kacimi ${ }^{1366 c}$, M. Eller D. Emeliyanovo ${ }^{130}$, Y. Enarari ${ }^{156}$ 'O.C. En M. Escalier ${ }^{116}$, H. Esch ${ }^{43}$, C. Escobar ${ }^{12}$ L. Fabbri ${ }^{200,2020}$, G. Facini ${ }^{31}$, R.M. Fakh M. Fant ${ }^{1900,90 b,}$, A. Farbin ${ }^{8}$, A. Farill ${ }^{133}$
F. Fassi ${ }^{1360}$, P. Fassnacht ${ }^{30}$, D. Fassoulic W. Fedorko ${ }^{169}$, M. Fehling-Kaschek ${ }^{18}$, S S. Fernandez Pere ${ }^{30}$, S. Ferrag ${ }^{33}$, J. Fer A. Ferrer ${ }^{168,}$ D. Ferrere ${ }^{49}$, C. Ferrettis ${ }^{88}$, M. Filipuzzi ${ }^{42}$, F. Filthaut ${ }^{105}$, M. Finck A. Firan ${ }^{40}$, A. Fischer 2, J. Fischer ${ }^{176}$, ${ }^{10}$, Fleischmann ${ }^{176}$, G.T. Fletcher ${ }^{40}$, G.

The ATLAS Collaboration: Two-particle Bose-Einstein correlations
el^{61}, A. Juste Rozas ${ }^{12, \text { P. }}$, M. Kaci 168, A. Kaczmarska ${ }^{39}$, M. Kado ${ }^{116}$, H. Kagan ${ }^{11}$ novitz ${ }^{15}$, C.W. Kalderon ${ }^{119}$, S. Kama Kan 40, A. Kamenshchikov ${ }^{129}$, N. Kanaya ${ }^{156}$, M. Kaneda ${ }^{30}$ Kercem , Kanzaki, M. Kanevskiy Kaplan S.N. Karpov ${ }^{64}$, Z.M. Karpova ${ }^{64}$, K. Karthik ${ }^{10}$
v. Karyukhin ${ }^{129}$, L. Kashif ${ }^{174}$, G. Kasieczka ${ }^{\text {dss }}{ }^{156}$, R.D. Kass ${ }^{10}$, S. Kastanas ${ }^{14}$, Y. Kataoka ${ }^{156}$ 8. Kazarinov ${ }^{6 i}$, R. Keeler ${ }^{770}$, R. Kehoe ${ }^{40}$, J.S. Keller r^{42}, J.J. Kempster ${ }^{76}$, H. Keoshkerian ${ }^{5}$, evan ${ }^{74}$, S. Kersten ${ }^{176}{ }^{6}$ K. Kessoku ${ }^{156}$, J. Keung ${ }^{515}$, F. Khalii-zada ${ }^{11}$, H. Khandanyan ${ }^{1479,16}$

The ATLAS Collaboration: Two-particle Bose-Einstein correlation
G. Aad ${ }^{84}$, B. Abbott ${ }^{112}$, J. Abdallah ${ }^{152}$, S. Abdel Khalek ${ }^{116}$, O. Abdinov ${ }^{11}$, R. Aben ${ }^{106}$, B. Abi ${ }^{113}$, M. Abolin ${ }^{89}$,

 G. Alexandre ${ }^{49}$, T. Alexopoulos ${ }^{10}$, M. Alhroob ${ }^{1652}, 165 x$, G. Alimonti ${ }^{300}$, L. Alio ${ }^{\text {s4 }}$, J. Alison ${ }^{31}$, B.M.M. Allbrooke ${ }^{18}$

 C. Anastopoulos ${ }^{140}$, L.S. Ancu ${ }^{90}$, N. Andaritio, T. Andeen ${ }^{35}$, C.F. Anders ${ }^{85 b}$, G. Anders ${ }^{30}$, K.J. Anderson ${ }^{31}$
 F. Anghinolff ${ }^{30}$, A.V. Anisenkov 108, ,, , Anjos ${ }^{125}$, A. Annovi ${ }^{47}$, A. Antonaki, M. Antonelli ${ }^{47}$, A. Antonov ${ }^{97}$,
 V. Arnal ${ }^{81}$, H. Arnold ${ }^{48}$, M. Arratia ${ }^{28}$, O. Arslan ${ }^{21}$, A. Artamono ${ }^{96}$, G. Artoni ${ }^{23}$, S. Asai ${ }^{156}$, N. Asbah ${ }^{42}$. A. Ashkenazi ${ }^{15} 4$, B. Asman ${ }^{147 r, 1470}$, L. Asquith ${ }^{6}{ }^{6}$ K. Assamagan ${ }^{25}$, R. Astalos ${ }^{1454}$, M. Atkinson ${ }^{166}$, N.B. Atlay ${ }^{142}$, B. Auerbach ${ }^{6}$, K. Augsten ${ }^{127}$, M. Aurousseau ${ }^{1266}$. G. Avolio ${ }^{30}$, G. Azueloo ${ }^{94, \varepsilon}$, Y. Azuma ${ }^{156}$, M.A. Baak ${ }^{30}$,

 K. Becker ${ }^{176}$ S. Becker ${ }^{99}$, M. Beckingham ${ }^{177}$, C. Becot ${ }^{116}$, A.J. Beddall ${ }^{19 x}$, A. Beddall ${ }^{19 x}$, S. Bedikian ${ }^{177}$
V.A. Bednyakov

 K. Benslama ${ }^{131}$, S. Bentvelsen ${ }^{106}$, D. Berge ${ }^{106}$, E. Bergeaas Kuutmann ${ }^{167}$, N. Bergee ${ }^{5}$, F. Berghaus ${ }^{170}$, J. Beringer ${ }^{15}$ C. Bernard ${ }^{122}$, P. Bernat ${ }^{77}$, C. Bernius ${ }^{78,}$, F.U. Bernlochner ${ }^{170}$, T. Berry ${ }^{76}$, P. Berta ${ }^{128}$, C. Bertellas ${ }^{84}$, O. Bessidskaia Bylund ${ }^{147, .1476}$, M. Bessner ${ }^{i 2}$, N. Besson ${ }^{\text {i37 }}$, C. Betancourt ${ }^{\text {G8 }}$, S. Bethke ${ }^{100}$, W. Bhimjit ${ }^{46}$,

 J. Brown ${ }^{55}$ P.A. Bruckman de Renstrom ${ }^{39}$, D. Bruncko 143, R. Bruneliere ${ }^{48}$, S. Bruee ${ }^{60}$, A. Bruni ${ }^{200}$, G. Bruni ${ }^{200}$ M. Bruschi ${ }^{200}$, L. Bryngemark ${ }^{50}$, T. Buanes ${ }^{14}$, Q. Buat ${ }^{143}$, F. Bucci 19, P. Buchholz ${ }^{142}$, R.M. Buckingham ${ }^{119}$

 D. Büscher ${ }^{48}$, V. Büsche ${ }^{52,}$, P. Bussey ${ }^{53}$, C.P. Buszello ${ }^{167}$, B. Butler ${ }^{577}$, J.M. Butler ${ }^{22}$, A.I. Butt ${ }^{3}$, C.M. But
J.M. Butterworth ${ }^{77}$, P. Butti ${ }^{106}$, W. Buttinger ${ }^{28}$, A. Buzatu ${ }^{35}$, M. Byzzewski ${ }^{10}$, S. Cabrera Urban ${ }^{168}$,
 L.P. Caloba ${ }^{242}$, D. Calvet ${ }^{34}$, S. Calvet ${ }^{34}$, R. Camacho Toro ${ }^{99}$, S. Camarda ${ }^{42}$, D. Cameron ${ }^{118}$, L.M. Caminada ${ }^{15}$,

\square whole-field planning in particle physics

- the untenable nature of the "Standard Model"
- how the Higgs Boson informs the next steps in collider physics

■ "Snowmass" organized by DPF next to last comprehensive one in 2001

Particle Physics Project Prioritization Panel

sub-panel of HEPAP

"Snowmass" Workshops

 organized by DPF
Two vehicles:

 previous one in 2001Particle Physics Project Prioritization Panel

sub-panel of HEPAP

Notorious P5 Review: 2008

Three Frontiers

- "the circles" -

2008 P5

By 2012 it was time for a P5. This time, it was different.

Snowmass \rightarrow P5 after LHC's first run

Our primary theme.
energy
intensity

DPF started organizing
in 2012

We worked together \& apart:

Sept 2012-August 2013: "Snowmass" October 2013-May 2014: P5

let's do it again, "updates"

let's do it again, "updates"

\square First, European Strategy for Particle Physics

let's do it again, "updates"

\square First, European Strategy for Particle Physics

let's do it again, "updates"

\square First, European Strategy for Particle Physics
. Then, US Snowmass Study

let's do it again, "updates"

\square First, European Strategy for Particle Physics

Then, US Snowmass Study

let's do it again, "updates"

\square First, European Strategy for Particle Physics
. Then, US Snowmass Study

let's do it again, "updates"

\square First, European Strategy for Particle Physics

Then, US Snowmass Study
\square Finally, HEPAP P5 Study

let's do it again, "updates"

\square First, European Strategy for Particle Physics

Then, US Snowmass Study
\square Finally, HEPAP P5 Study

let's do it again, "updates"

- First, European Strategy for Particle Physics

Then, US Snowmass Study
\square Finally, HEPAP P5 Study

" "Science Drivers":
-Use the Higgs boson as a new tool for discovery

" "Science Drivers":
-Use the Higgs boson as a new tool for discovery

- Pursue the physics associated with neutrino mass

"Science Drivers":

- Use the Higgs boson as a new tool for discovery
- Pursue the physics associated with neutrino mass
- Identify the new physics of dark matter

"Science Drivers":

- Use the Higgs boson as a new tool for discovery
- Pursue the physics associated with neutrino mass
- Identify the new physics of dark matter
- Understand cosmic acceleration: dark energy and inflation

"Science Drivers":
- Use the Higgs boson as a new tool for discovery
- Pursue the physics associated with neutrino mass
- Identify the new physics of dark matter
- Understand cosmic acceleration: dark energy and inflation
- Explore the unknown: new particles,interactions, and physical principles

Frontiers

Frontiers

particle physics

Why the Standard Model victory laps?

between 1967-2012

history was made

between 1967－2012

\square history was made

1967
2012
電電電

between 1967-2012

2012

between 1967-2012

guided research

guided research

Because: 3 SM predictions

The weak and electroma etic interactions originate in the same the 3 spin 1 vector bosons st $\mu l d$ exist: $\gamma, W^{ \pm}, Z^{0}$
\square A spin-0 field and particl ,hould exist
${ }^{\text {The }}$ original and electro
${ }^{\text {origin wat and electro }}$, interactions
in $1 e^{\text {tor bosons }}$ na exist: γ,

1/3 SM predictions

The weak and electromagnetic interactions originate in the same theory

1/3 SM predictions

\square The weak and electromagnetic interactions originate in the same theory

2/3 SM predictions

- 3 spin 1 vector bosons should exist: $\gamma, W^{ \pm}, Z^{0}$

2/3 SM predictions

3/3 SM predictions

A spin-0 field and particle should exist and so began a story

the 2012 discovery

completed the story
unrelenting 40 year effort.

We're schizophrenic about the Standard Model

Like the nursery rhyme

T HERE was a little girl who had a little curl
Right in the middle of her forehead;
When she was good, she was very, very good, And when she was bad she was horrid.

when the SM is good,

it's very good

Like the nursery rhyme

T HERE was a little girl who had a little curl Right in the middle of her forehead;
When she was good, she was very, very good, And when she was bad she was horrid.

when the SM is good,

it's very good
when it's bad
it's very...confusing

Maxwell's
Theory

Zeeman \&
Lorentz

Maxwell's
Theory

Zeeman \& Abraham-Lorentz
Lorentz self-energy crisis

Maxwell's
Theory

Zeeman \& Abraham-Lorentz
Lorentz self-energy crisis

Brout, Englert, Guralnik, Hagen, Higgs, Kibble

Weinberg/
Higgs Boson phenomenology
Salam

Brout, Englert, Guralnik,

Hagen, Higgs, Kibble Weinberg/ Salam

Higgs Boson

The Standard Model ingredients:

The Gauge Principle circa 1918, 1954 demand of a symmetry

Spontaneous Symmetry Breaking circa 1950, 1964 effective theory of phase transitions

particle stamp collecting

particle stamp collecting

spin $1 / 2$
the players:

particle stamp collecting

spin 1/2

the players:

particle stamp collecting

spin 1/2

the players:

\& their interactions

spin 1

the messenger fields

particle stamp collecting

spin $1 / 2$
the players:

particle stamp collecting

spin 1/2
the players:

\& their interactions

spin 1

the messenger fields

particle stamp collecting

spin 1/2

the players:

\& their interactions

spin 1

the messenger fields

what's great

about the Standard Model?

1. the Gauge Principle

Gauge Principle

Extremely powerful and pretty.

■ : generator of a group, with "charge" q
■ θ a parameter
Demand Invariance...

Gauge Principle

Extremely powerful and pretty.
$\left.\begin{array}{l}\text { Q: generator of a group, with "charge" } q \\ \square \theta \text { a parameter }\end{array}\right\} U(Q)=e^{i Q \theta}$
Demand Invariance...

Gauge Principle

Extremely powerful and pretty.

$\left.\begin{array}{l}\text { Q: generator of a group, with "charge" } q \\ \square \theta \text { a parameter }\end{array}\right\} U(Q)=e^{i Q \theta}$ Demand Invariance...

$$
\psi(x) \rightarrow e^{i Q \theta} \psi(x) \quad \psi(x) \rightarrow e^{i Q \theta(x)} \psi(x)
$$

Gauge Principle

Extremely powerful and pretty.

$\left.\begin{array}{l}\text { Q: generator of a group, with "charge" } q \\ \square \theta \text { a parameter }\end{array}\right\} U(Q)=e^{i Q \theta}$
Demand Invariance...

$$
\psi(x) \rightarrow e^{i Q \theta} \psi(x) \quad \psi(x) \rightarrow e^{i Q \theta(x)} \psi(x)
$$

it's a kind of magic*

* Ask me afterwards for my tried-and-true baseball analogy for the Gauge Principle

it's a kind of magic*

Invariance of the Local sort demands

[^0]
it's a kind of magic*

Invariance of the Local sort demands

\square the existence of a massless spin-1 field, $\quad A_{\mu}(x)$

it's a kind of magic*

Invariance of the Local sort demands

\square the existence of a massless spin-1 field, $\quad A_{\mu}(x)$
\square and prescribes coupling:

$$
\psi(x): q A_{\mu}(x) \bar{\psi}(x) \gamma^{\mu} \psi(x)
$$

* Ask me afterwards for my tried-and-true baseball analogy for the Gauge Principle

it's a kind of magic*

Invariance of the Local sort demands

\square the existence of a massless spin-1 field, $\quad A_{\mu}(x)$
\square and prescribes coupling: $\quad \psi(x): q A_{\mu}(x) \bar{\psi}(x) \gamma^{\mu} \psi(x)$

■ The demand of a symmetry forces the photon to exist!

* Ask me afterwards for my tried-and-true baseball analogy for the Gauge Principle

Gauge Principle piece:

- "Unfolds" rather neatly

Gauge Principle piece:

- "Unfolds" rather neatly

Gauge Principle piece:

"Unfolds" rather neatly

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

$$
+i \bar{\psi} \not D \psi
$$

Gauge Principle piece:

"Unfolds" rather neatly

$$
\begin{aligned}
& W^{ \pm}, Z^{0}, \gamma \\
& \mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \underset{W^{ \pm}, Z^{0}, \gamma^{2} h^{2}}{\operatorname{mon}}
\end{aligned}
$$

$$
\begin{aligned}
& +i \bar{\psi} \not D \psi
\end{aligned}
$$

Gauge Principle piece:

"Unfolds" rather neatly

that's really great

this Standard Model

the Gauge Principle:

Quantity	Value	Standard Model	Pull	Dev.
$M_{Z}[\mathrm{GeV}]$	91.1876 ± 0.0021	91.1874 ± 0.0021	0.1	0.0
$\Gamma_{Z}[\mathrm{GeV}]$	2.4952 ± 0.0023	2.4961 ± 0.0010	-0.4	-0.2
Γ (had) [GeV]	1.7444 ± 0.0020	1.7426 ± 0.0010	-	-
Γ (inv) [MeV]	499.0 ± 1.5	501.69 ± 0.06	-	-
$\Gamma\left(\ell^{+} \ell^{-}\right)[\mathrm{MeV}]$	83.984 ± 0.086	84.005 ± 0.015	-	-
$\sigma_{\text {had }}[\mathrm{nb}]$	41.541 ± 0.037	41.477 ± 0.009	1.7	1.7
R_{e}	20.804 ± 0.050	20.744 ± 0.011	1.2	1.3
R_{μ}	20.785 ± 0.033	20.744 ± 0.011	1.2	1.3
R_{τ}	20.764 ± 0.045	20.789 ± 0.011	-0.6	-0.5
R_{b}	0.21629 ± 0.00066	0.21576 ± 0.00004	0.8	0.8
R_{c}	0.1721 ± 0.0030	0.17227 ± 0.00004	-0.1	-0.1
$A_{F B}^{(0, e)}$	0.0145 ± 0.0025	0.01633 ± 0.00021	-0.7	-0.7
$A_{F B}^{(0, \mu)}$	0.0169 ± 0.0013		0.4	0.6
$A_{F B}^{(0, \tau)}$	0.0188 ± 0.0017		1.5	1.6
$A_{F B}^{(0, b)}$	0.0992 ± 0.0016	0.1034 ± 0.0007	-2.6	-2.3
$A_{F B}^{(0, c)}$	0.0707 ± 0.0035	0.0739 ± 0.0005	-0.9	-0.8
$A_{F B}^{(0, s)}$	0.0976 ± 0.0114	0.1035 ± 0.0007	-0.5	-0.5
$\bar{s}_{\ell}^{2}\left(A_{F B}^{(0, q)}\right)$	0.2324 ± 0.0012	0.23146 ± 0.00012	0.8	0.7
A_{e}	0.23200 ± 0.00076		0.7	0.6
	0.2287 ± 0.0032		-0.9	-0.9
	0.15138 ± 0.00216	0.1475 ± 0.0010	1.8	2.1
	0.1544 ± 0.0060		1.1	1.3
	0.1498 ± 0.0049		0.5	0.6
A_{μ}	0.142 ± 0.015		-0.4	-0.3
A_{τ}	0.136 ± 0.015		-0.8	-0.7
	0.1439 ± 0.0043		-0.8	-0.7
A_{b}	0.923 ± 0.020	0.9348 ± 0.0001	-0.6	-0.6
A_{c}	0.670 ± 0.027	0.6680 ± 0.0004	0.1	0.1
A_{s}	0.895 ± 0.091	0.9357 ± 0.0001	-0.4	-0.4
Quantity	Value	Standard Model	Pull	Dev.
$m_{t}[\mathrm{GeV}]$	173.4 ± 1.0	173.5 ± 1.0	-0.1	-0.3
$M_{W}[\mathrm{GeV}]$	80.420 ± 0.031	80.381 ± 0.014	1.2	1.6
	80.376 ± 0.033		-0.2	0.2
$g_{V}^{\nu e}$	-0.040 ± 0.015	-0.0398 ± 0.0003	0.0	0.0
$g_{A}^{\nu e}$	-0.507 ± 0.014	-0.5064 ± 0.0001	0.0	0.0
$Q_{W}(e)$	-0.0403 ± 0.0053	-0.0474 ± 0.0005	1.3	1.3
$Q_{W}(\mathrm{Cs})$	-73.20 ± 0.35	-73.23 ± 0.02	0.1	0.1
$Q_{W}(\mathrm{Tl})$	-116.4 ± 3.6	-116.88 ± 0.03	0.1	0.1
$\tau_{\tau}[\mathrm{fs}]$	291.13 ± 0.43	290.75 ± 2.51	0.1	0.1
$\frac{1}{2}\left(g_{\mu}-2-\frac{\alpha}{\pi}\right)$	$(4511.07 \pm 0.77) \times 10^{-9}$	$(4508.70 \pm 0.09) \times 10^{-9}$	3.0	3.0

The most accurate and precise scientific model in history

that's really great

this Standard Model

the Gauge Principle:

The most accurate and precise scientific model in history

"Standard Model"

"Standard Model"

standard |'standərd|
noun

1 a level of quality or attainment

"Standard Model"

standard |'standərd| model |'mädl|
 noun noun

1 a level of quality or attainment
2 ...a simplified description, esp. a mathematical one, of a system or process, to assist calculations and predictions

what's embarrassing

about the Standard Model?

it's not a dynamical theory

SM as an effective theory

I can draw free-body diagrams and make a SM of walking

A Dynamic Walking Model

B Dynamic Walking Human

I can draw free-body diagrams and make a SM of walking

B Dynamic Walking Human and make a SM of walking

SM is an effective theory

physiology of walking!

what's confusing

about the Standard Model?

2. Spontaneous Symmetry Breaking

the story of the Higgs Boson

How?

 a meaningless operation?
How?

a meaningless operation?

$\mathcal{L}=$ blah blah blah $+\mu^{2}$ blah + blah blah blah

How?

a meaningless operation?

$\mathcal{L}=$ blah blah blah $+\mu^{2}$ blah + blah blah blah

$\mathcal{L}=$ blah blah blah $-\mu^{2}$ blah + blah blah blah

SSB is like a magnet

SSB is like a magnet

SSB is like a magnet

SSB is like a magnet

$$
\begin{aligned}
& T>T_{C}
\end{aligned}
$$

$$
\begin{aligned}
& T<T_{C}
\end{aligned}
$$

SSB is like a magnet

$\mathcal{L}=$ blah blah blah $+\left(T-T_{C}\right) \times$ blah + blah blah blah

SSB is like a magnet

$$
\mathcal{L}=\text { blah blah blah }+\left(T-T_{C}\right) \times \text { blah }+ \text { blah blah blah }
$$

in the SM

We live in the broken symmetry world \& trying to discover how

We live in the broken
in the SM

symmetry world
\& trying to discover how

a Universal phase transition?

@ picosecond after the BB

a Universal phase transition?

@ picosecond after the BB

a Universal phase transition?

$$
\begin{aligned}
V= & -\mu^{2}(\text { higgs field })^{2}+\lambda(\text { higgs field })^{4} \\
& -\mu^{2}<0
\end{aligned}
$$

a Universal phase transition?

@ picosecond after the BB

$$
\begin{aligned}
V= & -\mu^{2}(\text { higgs field })^{2}+\lambda(\text { higgs field })^{4} \\
& -\mu^{2}<0
\end{aligned}
$$

a Universal phase transition?

@ picosecond after the BB

$$
\begin{aligned}
V= & -\mu^{2}(\text { higgs field })^{2}+\lambda(\text { higgs field })^{4} \\
& -\mu^{2}<0
\end{aligned}
$$

E (entire universe)

$$
\begin{aligned}
& \text { E (entire universe) } \\
&
\end{aligned}
$$

$v=246 \mathrm{GeV} . . . \mathrm{it}^{\prime} \mathrm{s}$ on.

$V=-\mu^{2}(\text { higgs field })^{2}+\lambda(\text { higgs field })^{4}$ E(entire universe)

${ }^{a^{0}}$	
${ }^{\circ}$	
B^{0}	
B^{+}	
B^{-}	
	$W W W W$

$\phi \quad\binom{+-----}{0-----}$
$\phi^{*}\binom{------}{0-----}$

$\mathrm{t}=$ the beginning 0 s

$$
\begin{aligned}
& \text { a o WWM } \\
& \text { Bo oWWM } \\
& B^{+}+W M W \\
& \text { B- - WMW } \\
& \phi\binom{+-----}{0-----} \\
& \phi^{*}\binom{------}{0-----}
\end{aligned}
$$

$\mathrm{t}=$ the beginning 0 s
$\mathrm{t}=10^{-12} \mathrm{~s}$
$t=10^{+18} s$

$\mathrm{t}=$ the beginning 0 s
$t=10^{-12} \mathrm{~s}$
$t=10^{+18} s$

ownu

$$
\begin{gathered}
a^{0} \\
B^{0} \\
B^{+} \\
B^{-}
\end{gathered}
$$

$$
\begin{aligned}
& \phi\left(\begin{array}{ll}
+ & \\
0 &
\end{array}\right) \\
& \phi^{*}\left(\begin{array}{ll}
- & \\
0 &
\end{array}\right)
\end{aligned}
$$

$\mathrm{t}=$ the beginning 0 s
$t=10^{-12} \mathrm{~s}$
$t=10^{+18} s$

WW

$$
\begin{array}{cc}
a^{0} & 0 \mathrm{WWW} \\
B^{0} & 0 \mathrm{WWM} \\
B^{+} & +\mathrm{WWW} \\
B^{-} & -\mathrm{WWW} \\
\phi\binom{+-----}{0-----} \\
\phi^{*}\binom{-----}{0-----}
\end{array}
$$

WW γ

$$
\begin{aligned}
& \text { a o WWM } \\
& \text { Bo oWWM } \\
& B^{+}+W M W \\
& \text { B- - WMW } \\
& \phi\binom{+-----}{0-----} \\
& \phi^{*}\binom{------}{0-----}
\end{aligned}
$$

The remaining primordial scalar is the Higgs Field.

$$
t=\text { the beginning } 0 \mathrm{~s} \quad \mathrm{t}=10-12 \mathrm{~s} \quad \mathrm{t}=10^{+18} \mathrm{~s}
$$

The Standard Model ingredients:

The Gauge Principle circa 1918, 1954 demand of a symmetry

Spontaneous Symmetry Breaking circa 1950, 1964 effective theory of phase transitions

The Standard Model ingredients:

SperGangelisinciple Symmetry Breaking circa 1950, 1964 demand of'a symmetry effective theory of phase transitions

Anderson

The Standard Model ingredients:

what's exciting

about the Standard Model?

its historical significance \& Higgs Field

Galilean mechanics

Newtonian gravity
Copernicus/Kepler astronomy
magnetism
electricity
electromagnetism

General Relativity

The job of the Higgs Field is special.

field generates mass of the charged fermions

$v:$

mass*

*charged fermions and W/Z!

mass*

*charged fermions and W/Z!

what's challenging

about the Standard Model?

all things Higgs

0+ Higgs Boson is not your father's particle!

Higgs Field piece:

■ "Unfolds" rather neatly

$$
\begin{aligned}
& W^{ \pm}, Z^{0}, \gamma \\
& \mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \underset{W^{ \pm}, Z^{0}, \gamma}{\boldsymbol{m}^{2} m^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& W^{ \pm}, z^{0}, \gamma
\end{aligned}
$$

Higgs Field piece:

■ "Unfolds" rather neatly

$$
\begin{aligned}
& W^{ \pm}, z^{0}, x \\
& \text { mbin } \\
& W^{ \pm}, Z^{0}, \gamma
\end{aligned}
$$

$$
+\left|D_{\mu} H\right|^{2}-\lambda v^{2} H^{2}+\lambda v H^{3}-\frac{\lambda}{4} H^{4}+g_{i} \bar{f}_{L i} f_{R i} H
$$

Higgs Field piece:

■ "Unfolds" rather neatly

$$
\begin{aligned}
& W^{ \pm}, Z^{0}, \gamma
\end{aligned}
$$

$$
\begin{aligned}
& W^{ \pm}, Z^{0}, \gamma \\
& \left.+i \bar{\psi} \not D \psi \begin{array}{ll}
W^{ \pm}, Z^{0}, \gamma \\
\mathrm{mv}^{2}
\end{array}\right\}_{u, d, c, s, t, b}^{e, \nu_{e}, \mu, \nu_{\mu}, \tau, \nu_{\tau},}
\end{aligned}
$$

$$
+\left|D_{\mu} H\right|^{2}-\lambda v^{2} H^{2}+\lambda v H^{3}-\frac{\lambda}{4} H^{4}+g_{i} \bar{f}_{L i} f_{R i} H+\frac{g v}{\sqrt{2}} \bar{f} f
$$

Higgs Field piece:

■ "Unfolds" rather neatly

$$
\begin{aligned}
& W^{ \pm}, Z^{0}, \gamma \\
& \mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \underset{W^{ \pm}, Z^{0}, \gamma^{2} \sum_{m}}{\operatorname{mon}^{2}} \\
& \text { mbin } \\
& W^{ \pm}, Z^{0}, \gamma
\end{aligned}
$$

Higgs Field piece:

■ "Unfolds" rather neatly

$$
+\left|D_{\mu} H\right|^{2}-\lambda v^{2} H^{2}+\lambda v H^{3}-\frac{\lambda}{4} H^{4}+g_{i} \bar{f}_{L i} f_{R i} H+\frac{\dot{g} v}{\sqrt{2}} \bar{f} f
$$

Higgs Field piece:

■ "Unfolds" rather neatly

$$
\begin{aligned}
& +\left|D_{\mu} H\right|^{2}-\lambda v^{2} H^{2}+\lambda v H^{3}-\frac{\lambda}{4} H^{4}+g_{i} \bar{f}_{L i} f_{R i} H+\frac{g v}{\sqrt{2}} \bar{f} f
\end{aligned}
$$

Higgs Field piece:

■ "Unfolds" rather neatly

$$
\begin{aligned}
& \begin{array}{r}
+\left|D_{\mu} H\right|^{2}-\lambda v^{2} H^{2}+\lambda v H^{3}-\frac{\lambda}{4} H^{4}+g_{i} \bar{f}_{L i} f_{R i} H+\frac{g v}{\sqrt{2}} \bar{f} f \\
\left.-H^{0}--\right\}, \substack{e, \nu_{e}, \mu, \nu_{\mu}, \tau, \nu_{\tau}, u, d, c, s, t, b}
\end{array}
\end{aligned}
$$

Higgs Field piece:

■ "Unfolds" rather neatly

$$
\begin{aligned}
& +\left|D_{\mu} H\right|^{2}-\lambda v^{2} H^{2}+\lambda v H^{3}-\frac{\lambda}{4} H^{4}+g_{i} \bar{f}_{L i} f_{R i} H+\frac{g v}{\sqrt{2}} \bar{f} f \\
& -\underbrace{H^{0}}<\underbrace{}_{\text {mass }} \int_{u, d, c, s, t, b}^{e, \nu_{e}, \mu, \nu_{\mu}, \tau, \nu_{\tau},}
\end{aligned}
$$

Higgs Field piece:

■ "Unfolds" rather neatly

$$
\begin{aligned}
& +\left|D_{\mu} H\right|^{2}-\lambda v^{2} H^{2}+\lambda v H^{3}-\frac{\lambda}{4} H^{4}+g_{i} \bar{f}_{L i} f_{R i} H+\frac{g v}{\sqrt{2}} \bar{f} f
\end{aligned}
$$

Higgs Field piece:

■ "Unfolds" rather neatly

$$
\begin{aligned}
& +\left|D_{\mu} H\right|^{2}-\lambda v^{2} H^{2}+\lambda v H^{3}-\frac{\lambda}{4} H^{4}+g_{i} \bar{f}_{L i} f_{R i} H+\frac{g v}{\sqrt{2}} \bar{f} f
\end{aligned}
$$

Let's talk about the Higgs Boson.

What happened in July, 2012?

the Object Itself?

the Object Itself? is...

 hazy

Higgs particle

strange.

quantum numbers of the vacuum

How many things are only one thing?

$$
\binom{\nu_{e}}{e}\binom{\nu_{\mu}}{\mu} \quad\binom{\nu_{\tau}}{\tau}
$$

$W^{ \pm}, Z^{0}, \gamma, g$

an elementary singlet

or part of a doublet

an elementary singleton?

Much confusion centers on

the "Higgs" Potential.
Our future mission: to unpack it.
$V=V_{0}-\left|D_{\mu} H\right|^{2}+\lambda v^{2} H^{2}+\lambda v H^{3}+\frac{\lambda}{4} H^{4}-g_{i} \bar{f}_{L i} f_{R i} H$

Much confusion centers on

the "Higgs" Potential.
Our future mission: to unpack it.
$V=V_{0}-\left|D_{\mu} H\right|^{2}+\lambda v^{2} H^{2}+\lambda v H^{3}+\frac{\lambda}{4} H^{4}-g_{i} \bar{f}_{L i} f_{R i} H$
vacuum
energy

Much confusion centers on

the "Higgs" Potential.
Our future mission: to unpack it.
$V=V_{0}-\left|D_{\mu} H\right|^{2}+\lambda v^{2} H^{2}+\lambda v H^{3}+\frac{\lambda}{4} H^{4}-g_{i} \bar{f}_{L i} f_{R i} H$

Higgs
mass

Much confusion centers on

- the "Higgs" Potential.

Our future mission: to unpack it.
$V=V_{0}-\left|D_{\mu} H\right|^{2}+\lambda v^{2} H^{2}+\lambda v H^{3}+\frac{\lambda}{4} H^{4}-g_{i} \bar{f}_{L i} f_{R i} H$

Higgs shape

mass

Much confusion centers on

- the "Higgs" Potential.

Our future mission: to unpack it.
$V=V_{0}-\left|D_{\mu} H\right|^{2}+\lambda v^{2} H^{2}+\lambda v H^{3}+\frac{\lambda}{4} H^{4}-g_{i} \bar{f}_{L i} f_{R i} H$

fermion couplings

loops

in relativistic quantum field theory

in relativistic quantum field theory
 the Feynman rules:

in relativistic quantum field theory

the Feynman rules:

in relativistic quantum field theory

the Feynman rules:

$\int_{0}^{\Lambda} d k$ (all known particles)

in relativistic quantum field theory

the Feynman rules:

$\int_{0}^{\Lambda} d k$ (all known particles) $+\int_{0}^{\Lambda} d k$ (all un-known particles)

not mysticism

"Loops" are at the core of our language traditionally highly predictive
highly accurate

not mysticism

■ "Loops" are at the core of our language traditionally highly predictive
highly accurate

EW fits: top quark

not mysticism

■ "Loops" are at the core of our language traditionally highly predictive
highly accurate

EW fits: top quark

not mysticism

■ "Loops" are at the core of our language traditionally highly predictive
highly accurate

EW fits: top quark

not mysticism

■ "Loops" are at the core of our language traditionally highly predictive
highly accurate

EW fits: top quark

EW fits: Higgs boson

How about

a spin 0, elementary particle?

First-ever spin 0 elementary particle.

$$
V=\lambda v^{2} H^{2}
$$

$M_{H}^{2}=M_{\text {tree }}^{2}+\delta M^{2}$
$\delta M^{2} \propto \frac{c}{16 \pi^{2}} g^{2} \Lambda^{2}$

3 kinds of loops

$$
V=\lambda v^{2} H^{2}
$$

Top loop is big and negative

$$
V=\lambda v^{2} H^{2}
$$

Requiring a large, opposing tree value

$$
V=\lambda v^{2} H^{2}
$$

An enormous fine-tuning

$$
V=\lambda v^{2} H^{2}
$$

An enormous fine-tuning

$$
V=\lambda v^{2} H^{2}
$$

if next scale is

the Planck Scale?

$M_{H}^{2}=(\mathrm{nnn}, \mathrm{nnn}, \mathrm{nnn}, \mathrm{nnn}, \mathrm{nnn}, \mathrm{nnn}, \mathrm{nnn}, \mathrm{nnn}, \mathrm{nnn}, \mathrm{nnn}, \mathrm{n} 60,000)$
(nnn, nnn, nnn, nnn, nnn, nnn, nnn, nnn, nnn, nnn, n44,375)
$M_{H}^{2}=125^{2}$
"coincidence"?

There's no coincidence in science.

Perhaps a huge hint?

of something "BSM"?
no shortage of ideas

Perhaps a huge hint?

of something "BSM"?
no shortage of ideas

looking for new physics at the $\sim 1 \mathrm{TeV}$ scale

looking for new physics at the $\sim 1 \mathrm{TeV}$ scale

looking for new physics at the $\sim 1 \mathrm{TeV}$ scale

"natural"

new stuff

Broadly speaking, categories of new stuff:

Supersymmetric theories -
Little Higgs-like theories -
Composite Higgs -
Extra dimensional theories
a Bose-like stop
a Vector-top
a Cooper Pair-like H

new stuff

Broadly speaking, categories of new stuff:

Supersymmetric theories -
Little Higgs-like theories -
Composite Higgs -
a Bose-like stop
a Vector-like top
a Cooper Pair-like H

Extra dimensional theories
\square or we tend to default to ideas like:
the multiverse or...
anthropomorphism

SCIENTIFIC AMERICAN ${ }^{m}$

Sign In | Register 0

Search ScientificAmerican.com
Q

Subscribe				
News \& Features	Topics	Blogs	Videos \& Podcasts	Education

This article is from the In-Depth Report The Higgs Boson at Last?

How the Higgs Boson Might Spell Doom for the Universe

Under the simplest assumptions, the measured mass of the Higgs could mean the universe is unstable and destined to fall apart. But don't worry-it won't happen for billions of eons

March 26, 2013 | By Saswato R. Das
Physicists recently confirmed that the Large Hadron Collider (LHC) at CERN, the particle physics laboratory in Geneva, had indeed found a Higgs boson last July, marking a culmination of one of the longest and most expensive searches in science. The

doom?

doom?

$$
V=\lambda v H^{3}+\frac{\lambda}{4} H^{4}
$$

Another
 consequence of a spin 0 fundamental particle.

$V=\lambda v H^{3}+\frac{\lambda}{4} H^{4}$

Another
 consequence of a spin 0 fundamental particle.

arXiv:1307.3536
Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia

The Standard Model is just weird.

These are: the best of times

and the best of times!

the Snowmass "Energy Frontier"

with Michael Peskin

EF working groups

EF1: The Higgs Boson

Jianming Qian (Michigan), Andrei Gritsan (Johns Hopkins), Heather Logan (Carleton), Rick Van Kooten (Indiana), Chris Tully (Princeton), Sally Dawson (BNL)
EF2: Precision Study of Electroweak Interactions
Doreen Wackeroth (Buffalo), Ashutosh Kotwal (Duke)
EF3: Fully Understanding the Top Quark

- Robin Erbacher (UC Davis), Reinhard Schwienhorst (MSU),

Kirill Melnikov (Johns Hopkins), Cecilia Gerber (UIC), Kaustubh Agashe (Maryland)
EF4: The Path Beyond the Standard Model-New Particles, Forces, and Dimensions (\& Flavor and CP Violation at high energy)

Daniel Whiteson (Irvine), Liantao Wang (Chicago), Yuri Gershtein (Rutgers), Meenakshi Narain (Brown), Markus Luty (UC Davis) [Soeren Prell (ISU), Michele Papucci (LBNL), Marina Artuso (Syracuse)]
EF5: Quantum Chromodynamics and the Strong Interactions
Ken Hatakeyama (Baylor), John Campbell (FNAL), Frank Petriello (Northwestern), Joey Huston (MSU)
characterizing future collider physics

52 conclusions
for all 13 facilities

4 hadron colliders
 we evaluated:
 - 7 electron colliders
 - 1 muon collider
 - 1 photon-photon collider

Conclusions

A three-pronged research program:

Mass, CP, and
especially
couplings
Measure properties of the Higgs boson.

- Measure properties of the:
t, W, and Z
\square Search for TeV-scale particles

A three-pronged research program:

```
They talk to
the Higgs Field
```

■ Measure properties of the Higgs boson.

Measure properties of the: t, W, and Z

Search for TeV-scale particles

A three-pronged research program:
\square Measure properties of the Higgs boson.

$\left.m_{t}^{2}\right|_{0}$| | $M_{\text {physical }}^{2}$ |
| :--- | :--- |
| M_{H}^{2} | |
| $M_{W, Z}^{2}$ | |

\square Measure properties of the: t, W, and Z

The Higgs Boson
is it alone?
anc

is it alone?

a part of a family?

is it alone?

a part of a family?

different in tiny details?

is it alone?

a part of a family?

ATLAS

Golden Channel

ATLAS

Golden Channel

couplings

couplings

$$
V=V_{0}-\left|D_{\mu} H\right|^{2}+\lambda v^{2} H^{2}+\lambda v H^{3}+\frac{\lambda}{4} H^{4}-g_{i} \bar{f}_{L i} f_{R i} H
$$

Couplings $\quad V$ (fermions) $=g_{i} \bar{f}_{L i} f_{R i} H$

Higgs discovery spawned an industry
precision fitting

Couplings $\quad V$ (fermions $)=g_{i} \bar{f}_{L i} f_{R i} H$

Higgs discovery spawned an industry
precision fitting

Couplings $\quad V$ (fermions) $=g_{i} \bar{f}_{L i} f_{R i} H$

Higgs discovery spawned an industry
precision fitting

a campaign

Measure the couplings of Higgs... to everything

a campaign

Measure the couplings of Higgs... to everything

how well?

Beyond the Standard Model Predictions @ 1TeV:

how well?

	κ_{V}	κ_{b}	κ_{γ}
Singlet Mixing	$\sim 6 \%$	$\sim 6 \%$	$\sim 6 \%$
2HDM	$\sim 1 \%$	$\sim 10 \%$	$\sim 1 \%$
Decoupling MSSM	$\sim-0.0013 \%$	$\sim 1.6 \%$	$<1.5 \%$
Composite	$\sim-3 \%$	$\sim-(3-9) \%$	$\sim-9 \%$
Top Partner	$\sim-2 \%$	$\sim-2 \%$	$\sim-3 \%$

Beyond the Standard Model Predictions @ 1TeV:

how well?

Benchmark for
discovery is few \% to sub-\%

	κ_{V}	κ_{b}	κ_{γ}
Singlet Mixing	$\sim 6 \%$	$\sim 6 \%$	$\sim 6 \%$
2HDM	$\sim 1 \%$	$\sim 10 \%$	$\sim 1 \%$
Decoupling MSSM	$\sim-0.0013 \%$	$\sim 1.6 \%$	$<1.5 \%$
Composite	$\sim-3 \%$	$\sim-(3-9) \%$	$\sim-9 \%$
Top Partner	$\sim-2 \%$	$\sim-2 \%$	$\sim-3 \%$

LHC Status in the couplings:

- 10's\% precision

Extrapolating to future machines

Extrapolating to future machines

Extrapolating to future machines

The precision Higgs Boson program is in full swing.

Precision Study of Electroweak Physics

Electroweak Precision Observables

- Correlating the Spin 1 messengers, leptons, quarks, and the Higgs boson

$\mathrm{M}_{\mathrm{w}}[\mathrm{GeV}]$

$\mathrm{m}_{\mathrm{t}}[\mathrm{GeV}]$

Electroweak Precision Observables

\square Correlating the Spin 1 messengers, leptons, quarks, and the Higgs boson

$M_{w}[\mathrm{GeV}]$

$\mathrm{m}_{\mathrm{t}}[\mathrm{GeV}]$

Electroweak Precision Observables

\square Correlating the Spin 1 messengers, leptons, quarks, and the Higgs boson

$M_{w}[\mathrm{GeV}]$

$m_{t}[\mathrm{GeV}]$

Electroweak Precision Observables

\square Correlating the Spin 1 messengers, leptons, quarks, and the Higgs boson

$M_{w}[\mathrm{GeV}]$

$\mathrm{m}_{\mathrm{t}}[\mathrm{GeV}]$

Electroweak Precision Observables

- Correlating the Spin 1 messengers, leptons, quarks, and the Higgs boson

Electroweak Precision Observables

- Correlating the Spin 1 messengers, leptons, quarks, and the Higgs boson

Systematics goal of $M_{W}= \pm 5 \mathrm{MeV} / c^{2}$

Electroweak Precision Observables

- Correlating the Spin 1 messengers, leptons, quarks, and the Higgs boson

Systematics goal of $M_{W}= \pm 5 \mathrm{MeV} / c^{2}$

Fully Understanding the Top Quark

why measure m_{t} precisely?

why measure m_{t} precisely?

EW precision observables
keep up with M_{W} precision

why measure m_{t} precisely?

- EW precision observables
keep up with M_{W} precision
\square fundamental parameter
largest coupling to Higgs
stability argument sensitivity

why measure m_{t} precisely?

$$
V=\lambda v H^{3}+\frac{\lambda}{4} H^{4}
$$

EW precision observables
keep up with M_{W} precision

- fundamental parameter
largest coupling to Higgs
stability argument sensitivity

why measure m_{t} precisely?

$$
V=\lambda v H^{3}+\frac{\lambda}{4} H^{4}
$$

EW precision observables
keep up with M_{W} precision
fundamental parameter
largest coupling to Higgs
stability argument sensitivity

why measure m_{t} precisely?

$$
V=\lambda v H^{3}+\frac{\lambda}{4} H^{4}
$$

EW precision observables
keep up with M_{W} precision

- fundamental parameter
largest coupling to Higgs
stability argument sensitivity

why measure m_{t} precisely?

why measure m_{t} precisely?

why measure m_{t} precisely?

OBTW...that potential shape?

from higgs-higgs self-coupling

very hard...
maybe 50\% precision at HL-LHC

The Path Beyond the Standard Model

history suggests

Beyond the

 Standard
Model:

motivation from non-zero
neutrino mass, the hierarchy problem, the antimatter
problem, \& the dark matter problem

Dominated by prospects for new particles @ TeV-ish mass and/or:

new particle LHC searches

ATLAS Exotics Searches* - 95\% CL Upper Exclusion Limits
ATLAS Preliminary

*Only a selection of the available mass limits on new states or phenomena is shown.
\dagger Small-radius (large-radius) jets are denoted by the letter $j(J)$.

new particle LHC searches

ATLAS Exotics Searches* - 95\% CL Upper Exclusion Limits
ATLAS Preliminary

*Only a selection of the available mass limits on new states or phenomena is shown.
\dagger Small-radius (large-radius) jets are denoted by the letter $j(J)$.

new particle LHC searches

new particle LHC searches

The TeV scale is in sight-almost history

The TeV scale is in sight-almost history

the future

5\%

buckle in

The LHC running is just beginning
"phase 0 upgrades"

2011	2012
Run I	
8 TeV	
$0.75{ }^{3} 0^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$	

$20 \mathrm{fb}^{-1}$

2015	2016	2017

$\sim 150 \mathrm{fb}^{-1}$
"phase 1 upgrades"

300 fb-1

I'll be an old man rocking

"phase 2 upgrades"

2 things and then conclusions

\square Let's be clear.

We collider types say we know about Mass.

Really?

As long as we know nothing about the neutral fermions

Really?

 orabout 85% of the gravitating universe

As long as we know nothing about the neutral fermions

Really?

or

about 85\% of the gravitating universe

We don't know the Mass story.

As long as we know nothing

Understanding Mass is still ${ }^{\text {ons }}$ Really "all hand̊s on deck" - EF, IF, and CF

We don't know the Mass story.

The Bumper Sticker Frontier

they're pithy

I'm rethinking...

maybe an apt metaphor

"Frontier"

The new physics will bulge somewhere!

a unique "Frontier"

The new physics will bulge somewhere!

a shared "Frontier"

The new physics will bulge somewhere!

a shared "Frontier"

but probably everywhere

a shared "Frontier"

The Higgs particle changes everything.

SM guided research
for

un-guided research?

over-guided research?

over-guided research?

We're exploring.

 "Frontier"

34

every player dresses himself: locality
every player dresses himself: locality

athletic
 34

anarchy!
every player dresses himself: locality
athletic
anarchy!

Electron-Positron Collider Proposals

Japan
ILC 250: 2032

International Linear Collider

CERN
 CLIC 350: 2035

Compact Linear Collider
China
CEPC: 2030
Circular Electron Positron Collider

CERN
 FCC-eе: 2039

Future Circular Collider

$\mathbf{e}^{+} \mathbf{e}^{-}$Collider

Electroweak production cross sections are predicted with (sub)percent level precisions in most cases

Relative low rate can trigger on every event

Well defined collision energy allow for the "missing" mass reconstruction (eg recoiling mass)

Clean events, smaller background small number of processes

Ideal for precisions: measurements or searches

Higgs Boson Production in $\mathrm{e}^{+} e^{-}$Collisions

At $\sqrt{s} \square 240-250 \mathrm{GeV}$, ee $\rightarrow Z H$ production is maximum and dominates with a smaller contribution from $e e \rightarrow v v H$.

Beyond that, the cross section decreases asymptotically as $1 / s$ for $e e \rightarrow Z H$ and increases logarithmically for $e e \rightarrow v v H$.

$$
\sqrt{s}=250 \mathrm{GeV}: \sigma_{z H} \approx 200 \mathrm{fb}, \sigma_{v \nu H} \approx 10 \mathrm{fb}
$$

Higgs Boson Tagging

Unique to lepton colliders, the energy and momentum of the Higgs boson in ee $\rightarrow \mathrm{ZH}$ can be measured by looking at the Z kinematics only: $E_{H}=\sqrt{s}-E_{Z}, \quad \vec{p}_{H}=-\vec{p}_{Z}$

Recoil mass reconstruction:

$$
m_{\text {recoil }}^{2}=\left(\sqrt{s}-E_{Z}\right)^{2}-\left|\vec{p}_{Z}\right|^{2}
$$

\Rightarrow Identifying the Higgs boson without looking at it. Measuring $\sigma(e e \rightarrow Z H$ independent of its decay !

LHC always measures $\sigma \times B R$, no model-independent way to distangle decay from production!

From PDG 2019

Run 2

is a generational event

Run 1 to Run 2

bigger science increment than Run 2 to Run 3
proton - (anti)proton cross sections

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html

Run 2

is a generational event

Run 1 to Run 2

bigger science increment than

Run 2 to Run 3

from:
< 1 tT event/s @ tevatron
proton - (anti)proton cross sections

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html

Run 2

is a generational event

Run 1 to Run 2

bigger science increment than Run 2 to Run 3
from:
< 1 tT event/s @ tevatron
to:
2 tT events/s in Run 1
proton - (anti)proton cross sections

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html

Run 2

is a generational event

Run 1 to Run 2

bigger science increment than Run 2 to Run 3
from:
< 1 tT event/s @ tevatron
to:
2 tT events/s in Run 1
to:
13 tT events/s in Run 2
proton - (anti)proton cross sections

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html

Run 2

is a generational event

Run 1 to Run 2

bigger science increment than
Run 2 to Run 3
from:
< 1 tT event/s @ tevatron
to:
2 tT events/s in Run 1
to:
13 tT events/s in Run 2
proton - (anti)proton cross sections

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html

- Fit from MC templates with different mass generated in steps of 1-10 MeV
- $28 \chi^{2}$ fits, separeted for lepton type (μ, e), W charge (+/-), rapidity interval (4 for $\mu, 3$ for e) and fit variable ($\mathrm{m}_{\mathrm{T}}, \mathrm{p}_{\mathrm{T}}$).
- Many other fits were performed as consistency checks by varying fit range, etc ...

Combined result

$\begin{aligned} & \text { Value } \\ & {[\mathrm{MeV}]} \end{aligned}$	Stat. Unc.	Muon Unc.	Elec. Unc.	Recoil Unc	Bckg. Unc.	$\begin{gathered} \text { QCD } \\ \text { Unc. } \end{gathered}$	$\begin{gathered} \text { EW } \\ \text { Unc. } \end{gathered}$	PDF Unc.	Total Unc.	$\begin{gathered} \chi^{2} / \mathrm{dof} \\ \text { of Comb. } \end{gathered}$
80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

$$
\begin{aligned}
& \text { stat. }=6.8 \mathrm{MeV} \text { exp. syst }=10.6 \mathrm{MeV} \quad \text { mod. syst } \\
& \mathrm{M}_{\mathrm{W}}=80370 \pm 19 \mathrm{MeV}
\end{aligned}
$$

mod. syst $=13.6 \mathrm{MeV}$

W mass

- Fit from MC templates with different mass generated in steps of 1-10 MeV
- $28 \chi^{2}$ fits, separeted for lepton type (μ, e), W charge (+/-), rapidity interval (4 for $\mu, 3$ for e) and fit variable ($m_{T}, p_{T}{ }^{\prime}$).
- Many other fits were performed as consistency checks by varying fit range, etc ...

Combined result

Value [MeV]	Stat. Unc.	Muon Unc.	Elec. Unc.	Recoil Unc.	Bckg. Unc.	$\begin{aligned} & \text { QCD } \\ & \text { Unc. } \end{aligned}$	$\begin{aligned} & \text { EW } \\ & \text { Unc. } \end{aligned}$	PDF Unc.	Total Unc.	$\chi^{2} /$ dof of Comb.
80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

$$
M_{w}=80370 \pm 19 \mathrm{MeV}
$$

From PDG 2019

100 km circular tunnel in China

4) Baoding (Xiong an), Hebei (Started in August 2017, near Beijing ~200km to the south)

International Linear electron-positron Collider in Japan

THE TOHOKU REGION OF JAPAN

100 km Future Circular Collider or Compact Linear Collider at CERN

High-luminosity LHC 2026-2035

1902.00134

- Observed limits on $\mathrm{Z}^{\prime}{ }_{\psi} \rightarrow \|$:
- CMS 4.56, ATLAS 4.5 TeV
- Easily reinterpretable to any model
- ATLAS fiducial $\sigma \times B$ limits applicable to spin-0/1/2 signals
- CMS efficiency ee ($\mu \mu$) 60-67 (93)\%
- Available in ee and $\mu \mu$ channels
- No unfolded results available yet, but possibility to "fold" new BSM models
- Parametrisation of dilepton resolution as a function of $m_{\|}$available on HEPdata

	$m\left(W^{\prime}\right)$ lower limit $[\mathrm{TeV}]$	
Decay	Observed	Expected
$W^{\prime} \rightarrow e v$	6.0	5.7
$W^{\prime} \rightarrow \mu v$	5.1	5.1
$W^{\prime} \rightarrow \ell v$	6.0	5.8

Standard Model Production Cross Section Measurements Status: July 2019

[^0]: * Ask me afterwards for my tried-and-true baseball analogy for the Gauge Principle

