ISP220, fall 2021: In-Class Project \#4; 15 pts plus! a bonus for 10 pts

Quarks, Spacetime, and the Big Bang

Thursday, September 16, 2021

Name: Stures Student \#

1 Waterparks: 15 pts

Figure 1: Me on one of my favorite rides at one of my favorite waterparks in Ocean City, MD.

Figure 2: A sketch of my actual trajectory: A-B-D-C. And a sketch of a proposed trajectory: E-A-B-D-C-?

The right hand figure shows my trip down and up the slide. In the left hand photo, I'm at point D. Use $g=10 \mathrm{~m} / \mathrm{s}^{2}$. Take point B to be our zero of vertical coordinates. Remember that 1 Joule is $1 \mathrm{~kg}-\mathrm{m} / \mathrm{s}^{2}$ and that Kinetic Energy is $K=1 / 2 m v^{2}$ and that gravitational potential energy is $U=m g h$. My mass is 100 kg .

What is the height of A and C in meters? You might ask Mr Google. 9.1 m

If D is halfway up, what is that height in meters? (1 point) \square m

We'll pretend that this trip is perfect - no friction and no air (so you cant hear me scream). Then mechanical energy conservation holds and we can write:

$$
K_{X}+U_{X}=K_{Y}+U_{Y}
$$

Where X and Y can be any of the A, B, C, D, E points in the sketch.

I gently set my tube at point A and just slide off without any speed at the beginning.

Write the general conservation of energy equation specifically between points A and B using the general K_{A}, etc symbols. (1 point)

$$
k_{A}+u_{A}=k_{B}+u_{B}
$$

 energies at A? (1 point)

Write the general conservation of energy equation specifically between points B and C using the general K_{B}, etc symbols. (1 point)

$$
K_{B}+u_{B}=K_{c}+u_{C}
$$

What are my potential \square quo J and kinetic \square energies at C? (1 point)

What are my potential \square $45 n$ J and kinetic \square 4500 J energies at D? (1 point)

In order to add some excitement I might have jumped on the railing and dropped from point E to A and then started my trip down.

Write the general conservation of energy equation specifically between points E and B using the general K_{B}, etc symbols.

What would be the extent of my injuries? (0 points)
sevious

2 Two Body Scattering: 7 pts

Let's work out a two-body, completely elastic collision. Here is a link to the D2L page that has the demo of this collision: video of the collision (same one as Tuesday).

Figure 3 is that same situation:

Figure 3: The initial state (top) and the final state (bottom) of a two body collision.

- $m(1)=2$
- $v_{1,0}=6$
- $m(2)=4$
- $v_{2,0}=0$
(1 point) $K_{1,0}=\square$
(1 point) $K_{2,0}=\square$
(1 point) $K_{\text {initial, total }}=\square$
Furthermore, after they collide the velocity of ball \#1 is:
- $m(1)=2$
- $v_{1}=-2$

So the final kinetic energy of ball $\# 1$ is:
(1 point) $K_{1}=$ \square

Let's work out what happens to ball $\# 2$.
Figure 4 shows a thermometer diagram we'll use to solve for kinetic energies conservation in this collision.

Add to the plots:

1. The "thermometer" for the initial kinetic energy of \#1 (1 point)
2. The "thermometer" for the initial kinetic energy of $\# 2$ (1 point)
3. The total energy in the initial state at the T location (1 point)
4. Propagate that Total "thermometer" to the final state T location (1 point)
5. Analyze the graph and draw in the final energies of $\# 1$ and $\# 2$

Finally, what's the velocity of $\# 2$?
(2 points) $v_{2}=\square$

Figure 4: Momentum conservation using thermometers.

