ISP220, fall 2021: In-Class Project \#7; 15 pts, Plus 10 points

 bonus!Quarks, Spacetime, and the Big Bang

Tuesday, September 28, 2021

Name: \qquad Student \# \qquad

1 Electrostatic Forces, 7 points

Figure 1 shows two electric charges, Q_{A} and Q_{B}.

Figure 1: Two charges which will be a part of this first set of questions.
Answer (1 point): If Q_{A} is positive and Q_{B} is negative, draw an arrow at Q_{A} to represent the force that Q_{A} experiences due to B.

Answer (1 point): If Q_{A} is positive and Q_{B} is positive, draw an arrow at Q_{B} to represent the force that Q_{B} experiences due to B.
(Taken together, these two uses of one image will be incompatible situations, just preserving space!)

In each of the following, relate $F_{A B}$ (after) (the force on A due to B in an original charge configuration) and $F_{B A}$ (before one of the parameters has changed):

$$
F_{A B}(\text { after })=X F_{A B}(\text { before })
$$

We'll be looking for X :

Answer (1 point): If $\left|Q_{A}\right|=\left|Q_{B}\right|, X=$ \qquad
("| |" means the magnitude of a quantity, without a sign)

Answer (1 point): If $\left|Q_{A}\right|=2 \times\left|Q_{B}\right|, X=$ \qquad 2
\square

Answer (1 point): If $\left|Q_{A}\right|=0.5 \times\left|Q_{B}\right|, X=0.5$

Answer (1 point): If $\left|Q_{A}\right|=\left|Q_{B}\right|$ and $m_{A}=m_{B}, X=$ \qquad

Answer (1 point): If $\left|Q_{A}\right|=\left|Q_{B}\right|$ and $m_{A}=2 \times m_{B}, X=\underline{1}$

2 Charge Conservation, 3 points

Imagine the decay of a very unusual particle that has a charge of $Q=+24 e$.

Answer (3 points): If it decays into 12 particles, 3 of which have electrical charges of $2 e$ each, what is the collective charge of the other 9 particles?

$$
Q=\quad 3 \times 2=6
$$

$Q_{\text {total }}$
18
$Q=$

3 Explicit Coulomb's Law, 3 points

This is a about accurate. Suppose you walk across the carpet in December. Your socks will pick up negative charges which will be distributed over your body. Let's say that total charge is

$$
Q_{T}=160 \text { micro-Coulombs }
$$

Answer (1 point): In scientific notation $\left(A \times 10^{B}\right)$, what is that charge in "just" Coulombs?
$Q_{T}=160 \times 10^{-6} \quad \mathrm{C}=1.6 \times 10^{-4} \mathrm{C}$

A single electron has a charge of

$$
Q(e)=1.6 \times 10^{-19} \mathrm{C}
$$

Answer (2 points): Roughly how many electrons have you accumulated during your stroll?

$$
\frac{1.6 \times 10^{-4}}{1.6 \times 10^{-19}}=10^{15}
$$

$$
N=10^{15}
$$

4 Compasses around a wire, 2 points

We'll use this image in Figure 2 a lot for currents and other directional quantities going into and out of a piece of paper or the screen. The image of literal arrows:

Figure 2: Vectors going into the screen or paper will be drawn as their back-end feathers. Arrows coming out of a screen or paper will be drawn as the point of the arrow.

Keeping the Oersted experiment in mind, look at Figure 3:

Figure 3: Vectors going into the screen or paper will be drawn as their back-end feathers. Arrows coming out of a screen or paper will be drawn as the point of the arrow.

Answer (2 points): Draw in on Figure 3 what the compass needles would show if that current is as shown in the figure. Make the arrow the "North" direction.

Figure 4: Home.

5 Charges in a current, 10 extra points

Figure 4 is a picture of part of our living room from a balcony above. The two lamps are separated by a distance

$$
R=3 \mathrm{~m}
$$

In each lamp (T , top and B , bottom) one Ampere of current flows.

> Answer (2 point): From the definition of an Amp, how many Coulombs of charge per second flows through each lamp?
> $Q=\begin{aligned} & \text { _ Cos }\end{aligned}$

Answer (3 point): From the definition of a Coulomb, how many electrons per second is that?

$N($ electrons $)=3.8 \times 10^{18}$

Answer (3 point): From Coulomb's law, $F=k \frac{Q_{T} Q_{B}}{R^{2}}$ how much force in N is that between those charges during a second? Use the approximation that $k=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$.

$$
F=k \frac{Q_{T} Q_{B}}{R^{2}}=9 \times 10^{9} \frac{(1)(1)}{9}=10^{9} \mathrm{~N}
$$

Answer (2 points): Ask Mr Google how many tons this force is.
$F=\sim 100,000$ tons

