| Name:     | KEY |  |  |
|-----------|-----|--|--|
|           |     |  |  |
|           |     |  |  |
|           |     |  |  |
|           |     |  |  |
| Student # |     |  |  |

# PHY215, fall 2017

# Modern Physics and Thermodynamics

Exam #2, Code-Name: Wavy Warrior Friday, October 27, 2017: 7 questions, 50 points

You must show all of your work.

#### Constants

```
1 \text{ calorie} = 4.186 \text{ J}
1 atmosphere = 1.01 \times 10^5 Pa
Gas Constant: R = 8.3145 \text{ J/mol} \cdot \text{K}
Bolzmann's Constant: k = 1.38 \times 10^{-23} \text{ J/L}
Sefan-Boltzmann's constant: \sigma = 5.67 \times 10^{-8} \text{ W/m}^2 \text{K}^4
Avagadro's Number: N_A = 6.023 \times 10^{23} \text{ mol}^{-1}
Speed of Light: c = 3 \times 10^8 \text{ m/s}
Charge of the electron: -e = -1.6 \times 10^{-19} C
Mass of the electron: m_e = 9.1094 \times 10^{-31} \text{kg} = 511 \text{ keV/c}^2
Mass of the proton: m_p = 1.6726 \times 10^{-27} \text{kg} = 938.3 \text{ MeV/c}^2
Mass of the neutron: m_n = 1.6749 \times 10^{-27} \text{kg} = 939.6 \text{ keV/c}^2
Mass of the alpha particle: m_{\alpha} = 3727.4 \text{ MeV/c}^2
Planck's Constant: h = 6.63 \times 10^{-34} \text{J-s} = 4.14 \times 10^{-15} \text{ eV-s}
...times c: hc=1.9864\times 10^{-25}J-m = 1239.8 eV-nm Reduced h: h/2\pi=\hbar=1.0546\times 10^{-34}J-s = 6.5821 × 10<sup>-16</sup> ev-s
...times c: \hbar c = 3.162 \times 10^{-28} \text{J-m} = 197.33 \text{ eV-nm}

Electrostatic constant: \frac{1}{4\pi\epsilon_0} = 8.9876 \times 10^9 \text{ N-m}^2\text{-C}^{-2}
...times e^2: \frac{e^2}{4\pi\epsilon_0} = 2.3071 \times 10^{-28} \text{ J-m} = 1.4400 \times 10^{-9} \text{eV-m}
Bohr radius: a_0 = \frac{\hbar}{m_e c \alpha} = 0.5292 \times 10^{-10} \text{ m}
Fine structure constant: \alpha = \frac{e^2}{4\pi\epsilon_0\hbar c} = 1/137.036
 Hydrogen Rydberg constant: R_H=1.097\times 10^7~\mathrm{m}^{-1}
```

### Formulae

reduced mass: 
$$\mu = \frac{mM}{m+M}$$
 mean velocity for an ideal gas:  $< v> = \frac{4}{\sqrt{2\pi}}\sqrt{\frac{kT}{m}}$ 

## Integrals

$$\int \sin x dx = -\cos x$$

$$\int \cos x dx = \sin x$$

$$\int \sin^2 x dx = \frac{1}{2}x - \frac{1}{2}\sin 2x$$

$$\int x \sin^2 x dx = \frac{x^2}{4} - \frac{x \sin 2x}{4} - \frac{\cos 2x}{8}$$

$$\int x^2 \sin^2 x dx = \frac{x^3}{6} - \left(\frac{x^2}{4} - \frac{1}{8}\right) \sin 2x - \frac{x \cos 2x}{4}$$

$$\int e^{-ax} dx = -\frac{1}{a}e^{-ax}$$

1. (5 pts) Thomson's "Plum Pudding" model of the atom imagined a "pudding" of positive charge interspersed with "plums" of particulate electrons. It could not explain what experiment done by his old student, Rutherford, and why? A sketch might help.

Model presumed that positive charge was distributed in atom. Large angle scattering of a's would not happen from anything but a hard, positive were.

Plum Pudding

dots: electrons

bachgrowd: vinform + charge



- 2. (total for problem: 10 pts) The cosmic ray particle, the "muon"  $(\mu)$  has a rest energy of 106 MeV. It can be produced in the lab and actually be captured by a proton to form a "muonic atom" in which the  $\mu$  takes the place of an electron in an otherwise hydrogen-looking atom. So, the bound system is one of proton-muon.
- **a.** (2 pts) Show that the reduced mass of the  $\mu p$  system is 95.2 MeV/c<sup>2</sup>.

$$M = \frac{MM}{M+M} = \frac{(106)(938)}{106+938}$$

$$M = 95.2 \text{ MeV/}_{2}$$

**b. (5 pt)** What is the smallest radius for the "orbiting" muon according to the Bohr model?

$$a_{0}^{h} = \frac{4\pi\epsilon_{0}}{e^{2}} \frac{h^{2}}{\mu} \times \frac{c^{2}}{c^{2}} = \left(\frac{4\pi\epsilon_{0}}{e^{2}}\right) \frac{(hc)^{2}}{\mu c^{2}}$$

$$a_{0}^{m} = \left(\frac{1}{1.44 \times 10^{-9} \text{ eV-m}}\right) \frac{(197 \times 10^{9} \text{ eV-m})^{2}}{(95.2 \times 10^{6} \text{ eV})}$$

$$= 2.8 \times 10^{-13} \text{ m}$$

$$200 \times \text{smaller than hydrogen}$$

**c.** (3 pts) What is the binding energy of the muon-proton system in the lowest Bohr orbit compared to that of "normal" hydrogen atom?

$$E = \frac{e^2}{8\pi\epsilon_0 a_0} = \frac{(1.44 \times 10^9 \text{ eV-m})}{2(2.6 \times 10^{-13} \text{ m})} = 2540 \text{ eV}$$

- 3. (total for problem: 5 pts) Air is mostly Nitrogen. On a warm summer day, we'll assume that  $T=37^{\circ}\mathrm{C}$ . Treating the molecule as a part of an ideal gas leads to a mean molecular speed of < v>=484.2 m/s. Remember that the Nitrogen molecule is diatomic. Assume that the mass of its neutrons is the same as the mass of its protons and there are 7 neutrons and 7 protons in each Nitrogen atom.
- **a.** (3 pts) What is the DeBroglie wavelength of  $N_2$ ?

$$M(N_z) = 28 \cdot m_p$$

$$\lambda = \frac{h}{P} = \frac{6.426 \times 10^{-34} \, \text{J.s}}{(28)(1.67 \times 10^{-27} \, \text{M})(484.2 \, \text{m/s})}$$

$$\lambda = \frac{h}{2} = \frac{6.426 \times 10^{-34} \, \text{J.s}}{(28)(1.67 \times 10^{-27} \, \text{M})(484.2 \, \text{m/s})}$$

$$\lambda = 0.03 \, \text{nm}$$

**b.** (2 pts) Is it's DeBroglie wavelength bigger than or smaller than its own diameter, which is about 1nm?

Smaller

- **4.** (total for problem: 10 pts) A wavefunction has the value  $\psi = A \sin x$  between 0 and  $2\pi$  and zero elsewhere.
- **a.** (5 pts) What is the normalization constant, A?

$$1 = \int_{0}^{2\pi} A^{2} \sin^{2}x \, dx$$

$$1 = A^{2} \left( \frac{1}{2} \times - \frac{1}{2} \sin^{2}x \right) \Big|_{0}^{2\pi}$$

$$1 = A^{2} \pi$$

$$A = \sqrt{\frac{1}{4}} \pi$$

**b. (5 pts)** Sketch the wavefunction and the probability density on the same graph. don't worry about an absolute vertical scale, but show the relative sizes of the two curves in your sketch.



**5.** (5 pts) A electron moves with a speed of  $v = 10^{-4}c$  inside a one-dimensional, infinite potential well of length 48.5 nm. The potential is zero elsewhere and the electron may not escape the box. Treating the electron as nonrelativistic, its kinetic energy is E = 0.002555 eV.

What is the approximate quantum number of the electron?

$$E = \frac{1}{2}mv^{2} = \frac{1}{2}m\beta^{2}c^{2} = \frac{1}{2}(0.511 \times 10^{6})(10^{-4})^{2}$$

$$E = 0.0025 \text{ eV}$$

**6.** (5 pts) A gamma ray of 700 keV energy Compton-scatters from an electron. Find the energy of the scattered photon at  $110^{\circ}$  and the energy of the scattered electron.

$$\lambda' = \lambda + \frac{h}{m_{e}c} (1 - \omega s\theta)$$

$$= \frac{hc}{E} + \frac{h}{m_{e}c} (1 - \omega s\theta) \times \frac{c}{c}$$

$$= \frac{1240 \text{ eV.nm}}{700 \times 10^{3} \text{ eV}} + \frac{1240 \text{ eV.mh}}{0.511 \times 10^{6} \text{ eV}} (1 - \omega s 110^{\circ})$$

$$\lambda' = 0.00177 + 0.0033 = 5 \times 10^{-3} \text{ nm}$$

$$\lambda' = 5 \text{ pm}$$

The scattered photon every

$$E' = hL = \frac{1240 \text{ eV} \cdot \text{nm}}{5 \times 10^{-3} \text{ nm}}$$

Scattered electron every trom everyn conservation

$$E_8 + m_e c^2 = E_8 + E_e'$$

$$E_e' = E_8 - E_8' + m_e c^2$$

$$= 700 \text{ heV} - 246 \text{ heV} + 511 \text{ heV}$$

$$E_e' = 965 \text{ heV}$$

- 7. (total for problem: 10 pts) The electron in the second excited state (n = 3) of a Bohr atom of hydrogen jumps to the ground state.
- **a.** (7 pts) What is the wavelength of the emitted photon in nm if the electron goes directly from  $n = 3 \rightarrow n = 1$ ?

$$N=3 \rightarrow N=1:$$

$$\lambda(3-1) = \left[R_{H}\left(\frac{1}{N_{f}^{2}} - \frac{1}{N_{c}^{2}}\right)\right]^{-1}$$

$$= \left[\left(1.097 \times 10^{7} \text{m}^{-1}\right)\left(\frac{1}{1^{2}} - \frac{1}{3^{2}}\right)\right]^{-1}$$

$$\lambda(3-1) = 102.6 \text{ nm}$$

**a.** (3 pts) What other transitions to the ground state could the electron take besides  $n=3 \to n=1$  and how many photons would be emitted in total for those other transitions?

$$N=3 \rightarrow N=2 \qquad 18$$

$$N=2 \rightarrow N=1 \qquad 18$$

$$-28$$