9. Quantum Statistics, 3.5

12. Atomic Nucleus, 1 lecture 34, November 17, 2017

housekeeping

Coming attractions

Next week:
lecture M and T

chapter 12 homework due 11/22... HW workshop 11/21
Wed before Thanksgiving is a lost cause, so the schedule always indicated no class

End game:

watch the schedule link as I'll do some adjustment
exam \#3 is Friday, December 1
I've not given any quizzes...have you noticed? I'll add that percentage to the homework fraction

today

statistical physics - Bose Condensation Atomic nucleus - introduction

Still MORE BOSONS Helium
Consider now a gas of bosons \rightarrow not $\operatorname{spin} 1$, so 1 do.
$g(E) d E=\frac{8 \sqrt{2} \pi m^{3 / 2}}{h^{3}} E^{1 / 2} d E \ldots$ but take bach that fact of 2 \downarrow

$$
\begin{aligned}
& g_{B}(E) d E=\frac{4 \sqrt{2}}{n^{3}} \pi m_{B}^{3 / 2} E^{1 / 2} d E \\
& n_{B}(E) d E=g_{B}(E) F_{B E}(E) d E \quad F_{B E}(E)=\frac{1}{B e^{E / h \pi}-1} \\
& N=\int_{S}^{\alpha} n(E) d E=\frac{4 \sqrt{2}}{h^{3}} \pi m_{B}^{3 / 2} \int_{0}^{\alpha} \frac{E^{1 / 2} d E}{(E-\mu) / h T}-1
\end{aligned}
$$

$$
N=\int_{3}^{\alpha} n(E) d E=V \cdot \frac{4 \sqrt{2}}{h^{3}} \pi m_{B}^{3 / 2} \int_{0}^{\alpha} \frac{E^{1 / 2} d E}{e^{(E-\mu) / h T}-1}
$$

N cant be negative!

$$
e^{(E-\mu) / h T} \text { must } \mu b e>0 \ldots E \text { is }>0 \ldots \text { so }(T)<0 \quad \exists T
$$

chang variables $x=E / h T \geqslant$ let $T \downarrow$

$$
\begin{aligned}
& N=v \cdot \frac{4 \sqrt{2}}{h^{3}} \pi m^{3 / 2} h^{3 / 2} T^{3 / 2} \int_{0}^{\infty} \frac{x^{1 / 2}}{e^{x-\mu / h T}-1} d x \\
& \left.\uparrow \quad\right|_{\text {instant as }} \quad \text { ares } \backslash \text { as } T!\text {. } \downarrow
\end{aligned}
$$

constant as. goes \downarrow as $T \downarrow$
T \downarrow

$$
\text { must } \uparrow \text { as } T \downarrow \Rightarrow{ }_{\Rightarrow}|\mu(T)| \downarrow
$$

But: problem. At some point

$$
\mu(T)=0 \longrightarrow \text { at } T_{c} \longleftarrow \text { "critical" }
$$

$$
N=v \cdot \frac{4 \sqrt{2}}{h^{3}} \pi m^{3 / 2} h^{3 / 2} T^{3 / 2} \int_{0}^{\infty} \frac{x^{1 / 2}}{e^{x-\mu / h T}-1} d x
$$

luns: $\int_{0}^{\infty} \frac{x^{1 / 2} d x}{e^{x}-1}=2.315 \ldots$ ie, when $\mu\left(T_{c}\right)=0$

$$
N=\frac{v \cdot \frac{4 \sqrt{2}}{h^{3}} \pi m^{3 / 2} h^{3 / 2} T^{3 / 2}(2.315)}{T}
$$

Problem: caid continue $T \downarrow$

Belows T_{c} ? Troubse. Einstein to the rescme in 1924

Einstein's way out: sepreate ont the ground state : $E=0$

$$
N=\int_{s}^{\alpha} n(E) d E=\frac{V \cdot \sqrt{2} \pi m_{B}^{3 / 2}}{h^{3}} \int_{0}^{\alpha} \frac{E^{1 / 2} d E}{e^{(E-\mu) / h T}}-1 \quad\left\{\begin{array}{l}
\text { only applies in } \\
\text { Particles not in } g \cdot s .: \\
E>0 \text {, not } E=0
\end{array}\right.
$$

Below $T_{c} \ldots$

$$
N=N_{0}+N_{n}
$$

R normal CHe: He
ground state of He II
as $T \downarrow \ldots N_{n}$ is depLeted and N_{D} increases.

$$
T<T_{c}<T_{n}<T_{V}=4.2 K
$$

He \int ($\mathrm{H} e_{I}$ a liquid satisfying $N(T)$
something different
phase transition

$$
\begin{aligned}
& N=\frac{v \cdot \frac{4 \sqrt{2}}{n^{3}} \pi m^{3 / 2} h^{3 / 2} T_{C}^{3 / 2}(2.315)}{} \quad \text { can solve tn } T_{C} \\
& m=m_{H e}=2 m_{p}+2 m_{n} \\
& T_{C}=\frac{h^{2}}{2 m_{H c} k}\left[\frac{N}{v} \frac{1}{2 \pi(2.315}\right]^{2 / 3} \sim 3 \mathrm{~K} \quad \text { (actually 2.17k) }
\end{aligned}
$$

every atom is in the ground state
 with everything.
"Bose Einstein Condensation"
grundstate... all atreus, singh ψ

Liquid Helium cmdeusate is... unusud.
He atrus witeract with one anothen .- closely spaced

liquid Helium

B|BlCTWO

BEC - 1995

Rb atoms...cooled to 50nK

nuclear physics hits:

1896 radioactivity discovered, Becquerel
1898 Radium/Polonium, Curies
alpha/beta rays, Rutherford
natural "transmutation," Rutherford and Soddy
alpha rays = helium nuclei, Rutherford and Royds
nucleus of + charge, Rutherford, Marsden, Geiger
proton discovered, Rutherford
neutron predicted, Rutherford
laboratory transmutation, Rutherford and Chadwick
proton accelerator, (Rutherford) Cockcroft and Walton
neutrino predicted, Pauli
Deuterium discovered, Urey
neutron discovered, (Rutherford) Chadwick
proton-neutron model of nucleus, Heisenberg
artificial radioactivity, I. Curie and Joliot
pion predicted, Yukawa
neutrino model, Fermi
nuclear fission, Hahn and Strassmann
controlled nuclear fusion, Fermi
pion and muon discovered, Occhialini and Powell

NUCLEAR PHYSICS
Just the facts, waiam:
Nuclei \rightarrow neutrons $\&$ protons (to first approximation)
"Protons" discsueved and named by .. Rutherford, of course
"nectivons" predicted lon aud discovered in the lab of... Ruthertand... of carse
Notation
2 "Atomic number" = "protons in nucleus
N "neutron number" = ... \# of neutrons
A "mass number" $=Z+N$
Symbol $\quad Z_{N} \quad \cdots$ often ${ }^{A} X_{N}$
eq: Nitrogen: ${ }^{14} N_{7}$, Uxysen ${ }^{12} \mathrm{O}_{8}, \propto{ }^{4} \alpha_{2}$ or ${ }^{4} \mathrm{H}_{2}$

Rutherfnd's Discovery weasurement

$$
\begin{aligned}
& \quad 14 N_{7}+{ }^{4} \alpha_{2} \rightarrow H_{1}+{ }^{17} O_{8} \\
& \text { ov: } \quad{ }^{14} N_{7}(\alpha, p)^{17} O_{8}
\end{aligned}
$$

spoke of "Hatoms" leter naned "proton" \Rightarrow "first one" spechlated that a reutual santran existed

Neution - 1932

Chadwich compaced
max reccil velocity

$$
\left.\begin{array}{l}
x+T \rightarrow x+T \\
x+N \rightarrow x+N \\
x+P \rightarrow x+P
\end{array}\right\} m_{T}=14 \text { and } 1 \quad v_{T}=\frac{2 m_{x}}{m_{x}+m_{T}}
$$

$v_{x_{0}}$? so vatios:
actually fard:

$$
\frac{v_{H}}{v_{N}}=\frac{m_{x}+14}{m_{x}+1}=\frac{33 \times 10^{6} \mathrm{~m} / \mathrm{s}}{4.7 \times 10^{6} \mathrm{~m} / \mathrm{s}} \Rightarrow m_{x} \cong 1.1\left(\times m_{p}\right)
$$

$m_{n}=938 \pm 1.8 \mathrm{meV} / \mathrm{c}^{2}$ then

$$
m_{n}=939.57 \mathrm{meV} / \mathrm{c}^{2}
$$

Now:
coved:

$$
\begin{array}{lll}
m_{p}=938.27 \mathrm{meV} / \mathrm{c}^{2} & 1 p_{1} & \\
m_{n}=939.57 \mathrm{meV} / \mathrm{c}^{2} & \text { in }_{1} & 0 \\
m_{e}=0.511 \mathrm{mev} / \mathrm{c}^{2} & -1 e &
\end{array}
$$

mut almost naver.

Genevicaly: "mucleon" = proton or neutron
"A" is the \# of mucleons in a mucleus
Mass convention:
unifieal mess unit, u or "AtomicMassunit"
definal for ${ }^{12} \mathrm{C}=12 \mathrm{u}$ exactly $\Rightarrow 1 u=1.660559 \times 10^{-22} \mathrm{hq}$

$$
=931.5 \mathrm{~kg} .
$$

Isotope: elements with different \#nentrons \& same \#protons (um... same element, huh)

Natural abmudauces vary

$$
\begin{array}{cl}
\text { Carbon } & { }_{6}^{11} C_{5} \\
{ }^{12} C_{6} & \left.98.6{ }^{14} C={ }^{11} C_{6}\right)
\end{array} \quad \text { trave \& }
$$

SIZES AND SATES OF NUCLEI
Started with Rutherford ξ his model

$$
\rightarrow{ }^{d} K
$$

α
\oplus
© turning point, $P, K E(\alpha) \rightarrow \operatorname{PE}(\vec{E})$

$$
\begin{aligned}
1 / 2 m u^{2} & =\frac{1}{4 \pi \epsilon_{0}} \frac{Q_{\alpha} Q_{A n}}{r}=\frac{1}{4 \pi t_{0}} \frac{e^{2} z_{\alpha} Z_{A n}}{d} \\
d & =\frac{4}{4 \pi E_{0}} \frac{z_{A n} e^{2}}{m u^{2}} \sim 3.2 \times 10^{-14} m
\end{aligned}
$$

a maximum size for An nucleus For $A g \ldots$ he fowl dr $2 \times 10^{-14} \mathrm{~m}$
New unit: femtometer (fm)

$$
1 \mathrm{fm}=10^{-15} \mathrm{~m} \xrightarrow{\Omega} R=r_{0} A^{1 / 3} \text { - Emperical }
$$

also caned "Fermi...fm! $r_{0}=1.2 \times 10^{-15} \mathrm{~m}=1.2 \mathrm{fm}$
nuclear densities
Assume spherical. - nuclear walter densities:

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi r_{0}^{3} A \quad \text { so } V \propto A \\
m_{N} & =m_{p} \simeq m_{n} \\
\rho & =\frac{M}{V}=\frac{A m_{N}}{4 / 3 \pi r_{0}^{3} A}=\frac{3 m_{N}}{4 \pi r_{0}^{3}} \sim 2.3 \times 10^{17} \mathrm{hg} / \mathrm{m}^{3} \\
& 2 \times 10^{14} \times \rho \text { (water) }
\end{aligned}
$$

not bad! density of neutron star $\sim 10^{8} \mathrm{~kg} / \mathrm{m}^{3}$

Sophistication of electron beam production
\rightarrow long Program at Stanford "size" is not a clear avid distinct concept. would "map" the change distribution of nuclei.

atomic electrons

Looks lite $F_{F D}$ doesnt it

$$
\begin{aligned}
& p(r)=\frac{\rho_{0}}{\left(1+e^{r-r_{0} / a}\right)} \\
& r_{0} \simeq 1.07 \mathrm{~A}^{1_{3}} \mathrm{fm} \\
& 2 a \simeq 1 \mathrm{fm}
\end{aligned}
$$

pretty good for $z>20$

Figure 3. Charge distributions for various nuclei as determined hom electranScattering experiments. [From R. Hofstadter, Arn. Rev. Nucl. Sci. 3, 231 [1957).]

Electron scattering at Stanford 1954-57

$$
\prod_{\theta_{1}} \text { electron diffraction }
$$

$$
\begin{aligned}
& \sin \theta_{1} \cong \frac{1.22 \lambda}{D} \longleftarrow \text { diaweter } \\
& \begin{array}{ll}
D=\frac{1.22 \lambda_{e}}{\sin \theta_{1}} \quad f_{n} \quad 450 \mathrm{meV} \text { e's } \\
\lambda_{e} \simeq 3 \times 10^{-15} \mathrm{~m}
\end{array} \\
& D=\frac{(1.22)\left(3 \times 10^{-15}\right)}{\sin 50^{\circ}}=4.8 \times 10^{-15} \mathrm{~m} \\
& \text { so } r_{c}=2.4 \times 10^{-15} \mathrm{~m} \\
& =2.4 \mathrm{fm}
\end{aligned}
$$

