12. Atomic Nucleus, 2 lecture 35, November 20, 2017

housekeeping

Coming attractions

Next week:

lecture today and tomorrow

chapter 12 homework due Wed 11/29...HW workshop Tue 11/28
no class day after tomorrow

End game:

I've made some adjustments to the schedule...stay tuned, now, week by week exam \#3 is Friday, December 1

I've not given any quizzes...have you noticed? I'll add that percentage to the homework fraction

today

Atomic nucleus - continuing

Notice: $R \propto A^{1 / 3}, p$ independent of A.
\Rightarrow as A goes $\hat{1}, \rho$ doesuit \Rightarrow nuclear face shunt rauvel.

Forces of attraction $\left.\begin{array}{c}n-n \\ n-p \\ p-p\end{array}\right\}$ all chow the same ξ very compact.
\Rightarrow had to remove N

Spin
Nucki have spin, "I" bosons on fermions

As usual:

$$
|\hat{I}|=\hbar \sqrt{I(I+1)} \Rightarrow \text { weqpetic wowents also. }
$$

New unit: "nuclear magneton"

$$
\begin{aligned}
& \mu_{N} \equiv \frac{e \hbar}{2 m_{p}}=5.05 \times 10^{-22} \mathrm{~J} / \mathrm{T} \quad \ll \mu_{B} \\
& \mu_{P}=2.79 .28 \mu_{N} \\
& \mu_{n}=-1.9135 \mu_{N}!\Rightarrow \text { structure }
\end{aligned}
$$

Arrear a fried... get level splitting in μ precession.
fun $I=1 / 2$ nucleus in maquetiz field B

Boltzmann: $\quad \frac{N_{\text {up }}}{N_{d n}}=e^{-}$
and this population difference can be exploited:
"NMR" ... now called "MRI"

Nuclear Forces
strong $P \rightarrow$ eP
what does his?
"Exchange Force"
original idea of
Heisenberg

$$
\begin{aligned}
& \Delta E=m_{x} c^{2} \\
& \Delta E \Delta t=\hbar \\
& \Delta t=\frac{\hbar}{m_{x} c^{2}}
\end{aligned}
$$

\Rightarrow suntest time,

$$
\text { fastest speed }=C
$$

$$
\begin{aligned}
& x=c \Delta t \\
& x=c \frac{\hbar}{m_{x} c^{2}} \\
& m_{x} c^{2}=\frac{\hbar c}{x} \quad x \sim 1 \mathrm{fm} \\
& m_{x} c^{2}=\frac{\hbar c}{10^{-15} m}=\frac{197.3 \mathrm{ev} \cdot \mathrm{~nm}}{10^{-6} \mathrm{~nm}} \\
& \simeq 200 \mathrm{meV}
\end{aligned}
$$

Predicted in 1935 by tideki Yukawa He caked it Y, I called it X, usu called pion, \bar{u}

Reweurber "binding energn" fn atoms?

$$
\begin{array}{ll}
m_{e} c^{2}+m_{p} c^{2}=m_{H} c^{2}+13.6 e \mathrm{~V} \\
m_{e} c^{2}+m_{p} c^{2}-m_{H} c^{2}=B
\end{array} \quad ?\left\{\begin{array}{l}
\text { to libevate e } \sum P_{1} \\
\text { wust supply } B
\end{array}\right.
$$

Ditto tn unclei, but whe. Simplest compound uucleus. ${ }^{2} D$

$$
\begin{aligned}
& m_{n}=1.008665 \mathrm{n} \\
& M\left({ }^{\prime} H\right)=1.007825 \mathrm{n} \quad \text { hydvogen } P \\
& M(2 H)=2.014102 n \text { desterium pn } \\
& m_{n}+M(1 H)-M\left({ }^{2} H\right)=0.002388 u=B / c^{2} \\
& =(0.002388)\left(\frac{931.5 \mathrm{mev} / \mathrm{c}^{2}}{u}\right) \\
& B=2.224 \mathrm{MeV}
\end{aligned}
$$

very coosaly bound derterium

How to wake a Deuteron

HOW STKONG CAN YOO vO?

$$
B=m_{n} c^{2}+m_{p} c^{2}-m_{D} c^{2}
$$

Caside ... $m_{\text {atron }} c^{2}=m_{\text {nocless }} c^{2}+z m_{c} c^{2}+$ electromequetic binding

nuctear mass of hydrogen: $m_{H}-m_{e}$
nuciear wass of denterium: $m_{D}-m_{e}$)

$$
B=m_{n} c^{2}+[m(H)-\underbrace{\left.-m_{c}\right] c^{2}-\left[m\left({ }^{2} H\right)-m_{e}\right]}_{\text {cancel }} c^{2}
$$

$$
B=\left[m_{n}+m(H)-m\left({ }^{2} H\right)\right] c^{2} \quad \text { cancelation or és alwanp }
$$

So for ${\underset{Z}{A}}_{A} X_{N}: \quad B=\left[N m_{n}+z m\left(i_{1}^{1} H_{0}\right)-m\left(\underset{Z}{A} X_{N}\right)\right] c^{2}$

Theselninding evegies per nuclern vay.

$$
\begin{aligned}
&{ }_{4}^{9} \mathrm{Be}_{5} m\left(9 B_{e}\right)=9.0121 u \ldots \text { from } B=\left[N m_{n}+z m\left(C_{i}^{1} f_{0}\right)-m\left({ }_{z}^{A} X_{N}\right)\right] c^{2} \\
& B=[S(1.008665 u)+(4)(1.007276 u)-9.0121 u] c^{2} 931.5 \frac{\mu_{e} V}{c^{2} \cdot u} \\
& B=(0.060329)(931.5 \mathrm{MeV})=56.196 \mathrm{MeV}
\end{aligned}
$$

$$
\begin{gathered}
\text { (} 2 \mathrm{H} \text { was } \sim 2 \mathrm{MeV} . . \text { so } 1 \mathrm{McV} / \text { muckeon... } \\
\mathrm{Be} \text { is a } 6 \mathrm{MeV} / \text { mucteon, } 6.24 \mathrm{MeV} / \mathrm{A})
\end{gathered}
$$

$$
\begin{aligned}
& \text { Linewise } \quad B\left(\begin{array}{l}
56 \\
26 \\
\mathrm{Fe}
\end{array}\right) \Rightarrow B / A=8.291 \mathrm{meV} / \text { mucleon } \\
& B\binom{23 \varepsilon}{q_{2}} \Rightarrow B / A=7.521 \mathrm{MuV} / \text { muclien } L \text { as }
\end{aligned}
$$

Iron -must tightly
bound

© 2007 Encyclopædia Britannica, Inc.
Models wed to explain this

Nuclear Models
very much a phenomenological exercise
Historically ... roughly two broad classes:
Liquid Droop Model (Bohr 1936)
Independent Particle Model aha shell Model (Wigner, denser, Meyer ~ 1948)
\rightarrow amusingly Aaqe Bohr received the Nobel Prize fun working out spue reconci liation between the mores ~ 1952
then... his Ph.D. 1954

Liquid Drop Model. - 3 pieces q evidence suggestive

1. Volume effect since $\quad B / A \sim$ constant $\quad B \sim A \propto V$
2. Surface effect nuclei near surface will reduce arevan binding
3. Codlouls repulsion
total Coulomb everay \rightarrow work required to assemble z proteus from to the volume

$$
\alpha \frac{z(z-1)}{A^{1 / 3}}
$$

\longrightarrow "semi-eursivical binding fromera"

$$
\begin{aligned}
& B\left(A X_{N}\right)=a_{V} A-a_{A} A^{2 / 3}-3 / 5 \frac{z(z+1)}{4 \pi t_{0} r} e^{2}-a_{5} \frac{(N-z)^{2}}{A}+\delta \\
& \left.\begin{array}{|c|}
\uparrow \\
\text { "volume" }
\end{array} \right\rvert\, \\
& .13 \mathrm{MeN} \\
& \text { "surface" }
\end{aligned}
$$

frow fits to data

$$
\sim A \geq 15
$$

sort of helps to understand fission

Sorta ques wite this

Shen model
uncleons in a well-definel quautum-merhainical oubit

- earh muclem in an arevaqe potential created by others.
... lihe a Fernin qas
A square-well

nber of identical nucleons in a state j a total spin j and a magnetic moment single particle in that state.
nucleus the "pairing energy" of the lame orbit is greater for orbits with
ption leads to the prediction that the ppears less often as the spin of odd nergy order of Table II predicts. For $1 / 2$ level has slightly lower energy than iring energy of $h_{11 / 2}$ exceeds that of $s_{1 / 2}$ s difference, the spin 11/2 would not ei, but $1 / 2$ would be observed instead. heoretical justification for assumptions is will be discussed in the next paper. las the consequence that all even-even vero. The main testing ground for the consists then in the spins and magthe nuclei of odd A. According to the rill adopt for these nuclei the extreme re, ascribing both spin and magnetic sst odd proton or neutron.

C MOMENTS OF ODD A NUCLEI
3 were exactly correct, the magnetic dd nuclei could be computed by the m the known gyromagnetic ratios of ron. The two possible cases, $l=j-\frac{1}{2}$ given j value lead to two computed f magnetic moment μ against j for neutron number and two (different) ith odd proton number. These theoe referred to as "Schmidt lines." The les lie in between the Schmidt lines, ide with them. For each j value the ts seem to fall into two groups, one to the line corresponding to $l=j+\frac{1}{2}$, d from near the line corresponding to halfway. It turns out that the assignde attributes to the first group an odd $l=j+\frac{1}{2}$, to the second one $l=j-\frac{1}{2}$. In on l-values as derived from magnetic

Table II. Order of energy levels obtained from those of a square well potential by spin-orbit coupling.

Onc. no.	Square	Spin term	No. of states	Shells	$\begin{gathered} \text { Total } \\ \text { no. } \end{gathered}$
0	Is	1s//*	2	2	2
1	10	1p/an $1 p_{1 / 2}$	$\left.\begin{array}{l} 4 \\ 2 \end{array}\right\}$	6	8
	${ }^{1 d}$	$t d_{v / 2}$	6		
2	(2s	$1 d_{\nu / z}$ $2 s_{1 / 2}$	4 2	12	
3	(1f	$1 f z^{\prime}$	8	8	28
	$\left\{\begin{array}{l}\text { 2p } \\ \\ \end{array}\right.$	$1 f_{w / 2}$ $2 p_{v / 2}$	6 4	22	
		$\begin{aligned} & 2 p_{1 / 2} \\ & 1 g_{v / 2} \end{aligned}$	2 10		
4	${ }^{18}$	$1 g m$			50
	2d	$2 d_{1 / 2}$ $2 d^{2} / 2$	$\left.\begin{array}{l}6 \\ 4\end{array}\right\}$	32	
	(3s	$3 s_{1 / 2}$ 1hin/	2 12		82
5	${ }^{1 / 6}$	$1 h_{T / 2}$ $2 f_{t / 2}$	10 8		
	$3 p$	$2 f_{u z}$ $3 p_{z / z}$ $3 p_{u z z}$ $1 i_{1 z / z}$	$\left.\begin{array}{r}6 \\ 4 \\ 2 \\ 14\end{array}\right\}$	44	126
6	$\left\{\begin{array}{l}1 i \\ 2 \mathrm{~g} \\ 3 d \\ 4 s\end{array}\right.$	$1 i_{1 / 2}$			

Shell model \ddagger Stability it wares some sense

nucleus $Z-N$	testable nuclei	very long-lived nuclei
even-even	155	11
even-odd	53	3
badd-even	50	3
odd-odd	4	5

Want to be really stable? Be a nucleus with an even $\# P$ \& even $\# n$ why? Pauli exclusim.

