12. Atomic Nucleus, 3
lecture 36, November 21, 2017

## housekeeping

## Coming attractions

This week:

chapter 12 homework due Wed 11/29...HW workshop Tue 11/28
no class day after tomorrow

## End game:

I've made some adjustments to the schedule...stay tuned, now, week by week exam \#3 is Friday, December 1

## today

## Atomic nucleus - continuing



Where we were:

- strong fence as exaumer if "Exchange Force"
$\longrightarrow$ predict pion with $\mathrm{m} \mathrm{\sim} 200 \mathrm{MaV} / \mathrm{c}^{2}$

(found in CRS in 1949 w wass $139 \mathrm{MeV} / \mathrm{c}^{2}$ )
$\checkmark$ nuclear binding

nuclear models
liquid Iron
$\varepsilon_{1}$
shell Model

Radioactivity. Whats conserved while stuff is falling apart?
$\checkmark$ 1. nucleon \#, A
1 2. electric charge, ret
$\checkmark$ 3. energy
ک 4. momentum
I 5 angular momentum

- 3 hinds of nuclear decay:
decay product

1. alpha decay 4 He
2. beta decay

$$
e^{-}, e^{t}, v^{\prime} s
$$

3. gama deary

Generic Larquage of Decay

$$
N=\# \text { muchii }
$$

Rate at which decay harpers:

$$
-\frac{\Delta N}{\Delta t}=\text { activity }=\alpha N
$$

ss: $\quad \frac{d N}{d t}=-\lambda N \quad \underline{\lambda}=$ "decay constant"
or: $\frac{d N}{N}=-\lambda t$

$$
\begin{aligned}
\ln \left(\frac{N_{f}}{N_{0}}\right) & =-\lambda t \\
N_{f} & =N_{0} e^{-\lambda t}= \\
N & =N_{0} e^{-\lambda t}
\end{aligned}
$$

$$
N_{0}=\# \text { nucleons ct } t=0
$$

dispense with $N_{f}$
$\nu N=N_{0} e^{-\lambda t}$
Decay Rate: $R \equiv\left|\frac{d N}{d t}\right|=N_{0} \lambda e^{-\lambda t}=R_{0} e^{-\lambda t}$
Two standard representations



"half-life" time for a sample to decay to $1 / 2$ of its original number, $T_{1 / 2}$

$$
\begin{aligned}
N_{\frac{1}{2}}=\frac{N_{0}}{2} & =N_{0} e^{-\lambda T_{1 / 2}} \\
e^{\lambda T_{1 / 2}} & =2 \\
\lambda T_{1 / 2} & =\ln 2 \\
T_{1 / 2} & =\frac{\ln 2}{\lambda}=\frac{0.693}{\lambda}
\end{aligned}
$$

"mean lifetime" aka "lifetime" $\tau=1 / \lambda$

$$
\begin{aligned}
& N(t)=N_{0} e^{-\lambda t}=N_{0} e^{-t / \tau} \\
& N(\tau)=N_{0} e^{-1}=\frac{N_{0}}{2.218}=0.368 N_{0}
\end{aligned}
$$

Units

$$
\begin{aligned}
& \longrightarrow\left[T_{1 / 2}\right]=s \quad \longrightarrow[\tau]=s \quad[R]=\text { decals per or }=s^{-1} \\
& \downarrow \\
& 1 C_{i}=\text { "Curie" }=3.7 \times 10^{10} \text { decals } / \mathrm{s} \\
& 1 \mathrm{~Bq}=\text { "Becquerel" }=1 \text { dey } / \mathrm{s}
\end{aligned}
$$

example: $\quad T_{y_{2}}$ of ${ }^{226} 8_{8} \mathrm{Ra}$ is $1.6 \times 10^{3} \mathrm{Y}$
$m C_{i}$ and $\mu C_{i}$ are practical
what's the activity during this time if $N_{0}=3 \times 10^{16}$ nuclei $\varangle$

$$
\begin{aligned}
\underline{T_{y_{2}}}= & \left(1.6 \times 10^{3} y\right)\left(\frac{\pi \times 10^{7} \mathrm{~s}}{y}\right)=5 \times 10^{10} \mathrm{~s} \\
T_{y_{2}} & =\frac{0.693}{\lambda} \Rightarrow \lambda=1.4 \times 10^{-11} \mathrm{~s}^{-1} \\
R_{0} & =\lambda N_{0}=(\quad)(\quad)
\end{aligned}
$$

$\rightarrow$ Energies of disintiquation
Imagine the following generic decay chain:

$$
{ }_{z}^{A} X_{N} \rightarrow " \underline{" D}^{n}+{ }^{\prime} y^{"}+" \underline{C Q}
$$

The "Q" of the decay $\Rightarrow$ "reaction energy"

$$
\text { or u's } \quad \rightarrow Q=\left[M\left(\underline{A} \begin{array}{l}
\left.A X_{N}\right) \\
\hline
\end{array} \underline{M(D)}-M(y)\right] \cdot 931.5\right.
$$

From bethe... $Q=-B$
if $B>Q<0 \Rightarrow$ nucleus is stable $\checkmark$
if $B<0 \quad Q>0 \Rightarrow$ nucleus is unstable and might decay
$\alpha$ decay $Z_{Z}^{A} X_{N} \rightarrow{ }_{z-2}^{A-4} D_{N-2}+{ }_{2}^{4} \mathrm{He}$
$\beta$ decay

$$
\begin{aligned}
& { }_{Z}^{A} X_{N} \rightarrow{ }_{Z+1}^{A} \cdot D_{N-1}+\beta^{-} \\
& { }_{Z}^{A} X_{N} \rightarrow{ }_{Z-1}^{A} D_{N+1}+\beta^{+} \\
& { }_{Z}^{A} X_{N}^{*} \rightarrow{ }_{Z}^{A} X_{N}+\gamma
\end{aligned}
$$

$$
p \rightarrow n+e^{+}
$$

within the nucleus
$\gamma$ decay
\{nuclear excited state... \} think shell model

$\alpha$ decay
wot all nuclei are $\alpha$-emitters
Ra Ur are tamers
Rn ${ }_{86}^{222} R_{n}$ in your basement... is also

$$
\begin{aligned}
& \longrightarrow \quad{ }_{Z}^{A} X_{N} \rightarrow{ }_{z-2}^{A-4} D_{N-2}+{ }_{2}^{4} \mathrm{He}_{2} \\
& \longrightarrow Q=\left[M\left(\begin{array}{l}
A \\
\longrightarrow
\end{array} X_{N}\right)-M\left(\begin{array}{l}
A-4 \\
z-2
\end{array} D_{N-2}\right)-M\left(\begin{array}{l}
4 \\
2
\end{array} \mathrm{He}_{\varepsilon}\right)\right] c^{2}
\end{aligned}
$$

$\checkmark$ example Radium 226

$$
\begin{aligned}
& \longrightarrow M\left({ }^{226} \mathrm{Ra}\right)=226.025406 \mathrm{u} \\
& \longrightarrow M\left({ }^{222} \mathrm{Ru}\right)=222.017574 u \\
& M\left({ }^{4} \mathrm{He}\right)=4.002603 \mathrm{u} \\
& Q=(226 . \cdots-222 \ldots-4.002603) \mathrm{u} 931.5 \mathrm{MeV} / \mathrm{u} \\
& Q=40 \text { unstable and decay could happen. }
\end{aligned}
$$

$$
\stackrel{\alpha}{\bar{o}} \longleftrightarrow \stackrel{\underline{x}}{\overline{0}} \rightarrow \frac{0}{\overline{0}}
$$

so: $\quad\left|P_{\alpha}\right|=\left|P_{D}\right|$
and $\quad Q=[M(x)-M(D)-M(\alpha)] c^{2}=K_{D}+K_{\alpha}$

Assume wou-velativistic

$$
\begin{aligned}
Q & =\frac{P_{0}^{2}}{2 M_{D}}+\frac{P_{\alpha}^{2}}{2 M_{\alpha}}=\frac{P_{\alpha}^{2}}{2 M_{\alpha}}+\frac{P_{\alpha}^{2}}{2 M_{D}} \\
& =\cdots \\
Q & =K_{\alpha}\left(1+\frac{M_{\alpha}}{M_{D}}\right)
\end{aligned}
$$

ov $K_{\alpha}=\underset{M_{\alpha}+M_{0}}{M_{p}} \quad \xrightarrow{\text { weve }}\left(\frac{222}{226}\right)(4.87)=4.8 \mathrm{MeV}$ non-rel.

What is $\alpha$ Decay?
a Quautum mechamical turnellng phenowenon.
$K_{\alpha}$ for ${ }^{222} R_{n}$ was $\sim 5 \mathrm{MeV}$
Sowetines 80 stich and collectively rattle alourd inside a pofential which georqe gamow modeded as:

Couloub prtentid of mothus


$$
\begin{aligned}
& \rightarrow K_{\alpha}=5 \mathrm{MeV} \Rightarrow v_{\alpha}=2 \times 10 \mathrm{~m} / \mathrm{s} \\
& \Delta t=\frac{2 R}{v_{\alpha}} \\
& \Delta t=\frac{\sim 2 \times 10^{-22} \mathrm{~s}}{21} \\
& f=1.4 \times 10^{21} \mathrm{~Hz} \\
& C \text { nure murber of "tries" } \\
& \text { at the potential edse }
\end{aligned}
$$

Remuuber bavrier penctration?
E


- (conulicatal inteqral q.)
transuission coefficient $T(E)=e$
~not very E-dependent.
For ${ }^{222} \mathrm{Rn}_{n}$ wim $K_{\alpha}=4.7 \mathrm{MeV} \sim T=10^{-34}$ abi a mobsali
But the $\alpha$ 's are persistant:
$f=10^{21}$, w $10^{21}$ tries aqpinst a linalihood of $10^{-34}$

$$
\sim 10^{-34} \times 10^{21} \sim 10^{-13} s^{-1} \rightarrow \lambda
$$

hey-life :

$$
\begin{array}{r}
\lambda=\frac{\ln 2}{T_{1 / 2}} \Rightarrow T_{1 / 2}=2 \times 10^{12} s=200,000 y \\
\text { actual: } 160,00 y .
\end{array}
$$

$\beta$ decay.
$\beta$ decal confusing since 19 -teens measurements of $E(\beta)$ well established before Born worded.


Experiment $(s)$ :
\#e


Paulis holf-hearted idea

he called it the "neutron".. nobody paid attentim Ì when Chodwioh fond our neutron a new name was required.

1934 Enrico Fermi - wrote the complete theory. of what he called the "little neutron"... neutrino


