4. Structure of the Atom, 2
lecture 17, October 9, 2017

Tools \& Home Improvement Best Sellers Deals \& Savings Gift Ideas Power \& Hand Tools Lighting \& Ceiling Fans Kitchen \& Bath Fixtures Smart Home Shop by Room Launchpad

amazonbusiness | Save on more than a million products (3) |
| :--- |
| with exclusive business prices. |$>$ Learn more

Office Products , Office \& School Supplies , Staplers \& Punches , Manual Staplers , Desktop Staplers

amazonbasics
AmazonBasics Stapler with 1000 Staples - Black
ฟ ฟै \#1 Best seller in Desk Staplers

Price: $\$ 5.98 \vee$ prime

In stock.
Want it Friday, Oct. 6? Order within 8 hrs 57 mins and. Sose Two-Day Shipping at checkout. Details Ships from and sold by Amazon.com. Gift-wrap available.

- Stapler holds up to 200 staples and offers a 10 -sheet stapling capacity
- Can be opened for tacking info to a bulletin board; reverse the anvil for pinning documents
- A great choice for shared workspaces
- Full rubber base keeps stapler securely in place during use-no skidding or slipping
- Includes a convenient staple remover at the end; Matte black finish

Compare with similar items
New (1) from $\$ 5.98$ vprime
\square Report incorrect product information.
amazonhome services
Let a pro do a deep clean Schedule .

housekeeping

exam 2: Friday, October 27
This week:
lecture MTW...we'Il see about Friday
HW4 due Friday
Honors option
Go to: https://qstbb.pa.msu.edu/storage/PHY215/honors/
read the Minervalnstructions1_2017_215 document

finish

Rutherford Scattering

soliloquy on "cross sections"

The "Bohr Atom"

(

finish

Rutherford Scattering

soliloquy on "cross sections"

The "Bohr Atom"

$$
b=\frac{z_{1} z_{2} e^{2}}{4 \pi t_{0} m v_{0}^{2}} \cot q_{2}
$$

$$
\begin{aligned}
& \theta=0 \quad \cot \theta / 2=\infty \Rightarrow b=\infty \\
& \text { forward } \\
& \theta=\pi / 2 \quad \cot \theta / 2=1 \quad b=\frac{2 z_{2} e^{2}}{4 \pi z_{0} m v_{0}^{2}} \\
& \theta=\bar{\pi} \quad \cot \theta / 2=0 \Rightarrow b=0
\end{aligned}
$$

bachward.
T for a simple nucleus..
smaller $b \Rightarrow$ larger θ

If b is between b and $b+d b$, θ win be ketween θ and $\theta+d \theta$

What's the likelihood of scattering into a particular direction? glad won ashed
"cross section"

What impact parameter will cause scatteringifor α of 7.7 MeV on gold

$$
\begin{aligned}
& 10 \text { ? } \\
& 90^{\circ} \text { ? } \\
& b=\frac{z_{1} z_{2} e^{2}}{4 \pi z_{0} m v_{0}^{2}} \cot \theta_{2} \quad K=2.7 \mathrm{MeV} \ldots \text { assume classical } \\
& k=\frac{1}{2} m s^{2} \\
& m u^{2}=2 k \\
& b=\frac{z_{1} z_{2} e^{2}}{4 \pi \epsilon_{0} 2 \mathrm{~K}} \cot \theta_{2} \quad z_{2}=79 \quad z_{1}=2 \quad 7.7 \mathrm{meV}=1.2 \times 10^{-12} \mathrm{~J} \\
& b=\frac{(2)(79)\left(1.6 \times 10^{-19}\right)}{(4 \pi)\left(8.85 \times 10^{-12}\right)\left(1.2 \times 10^{-12} \mathrm{~J}\right)(2)} \quad(\cot 812)=1.46 \times 10^{-14} \cot \% / 2
\end{aligned}
$$

fro $1^{0} \quad b=1.7 \times 10^{-12} \mathrm{~m}$
fr $\pi / 2 \quad b=1.4 \times 10^{-14} \mathrm{~m}$

What is the probability fo deflection $>1^{\circ}$ compared to $>90^{\circ}$? fro $1^{\circ} b=1.7 \times 10^{-12} \mathrm{~m}$ so $>1^{0}, b<1.7 \times 10^{-12} \mathrm{~m}$ or fr $\pi / 2 \quad b=1.4 \times 10^{-14} \mathrm{~m}$ so $>90^{\circ}, b<1.4 \times 10^{-14} \mathrm{~m}$. or areas

$$
\begin{aligned}
& >1^{0} \longrightarrow \pi b^{\pi b^{2}} \in \pi\left(1.7 \times 10^{-12} \mathrm{~m}\right)^{2} \\
& >90^{\circ} \ldots \pi \cdots b^{2}<\pi\left(1.4 \times 10^{-14} \mathrm{~m}\right)^{2}
\end{aligned}
$$

the area corresponding to a given deflection \equiv cross section , σ
beams are randomly aimed at atom, so

$$
\frac{P\left(>1^{\circ}\right)}{P\left(>98^{\circ}\right)}=\frac{\pi\left(1.7 \times 10^{-12} \mathrm{~m}\right)^{2}}{\pi\left(1.4 \times 10^{-14} \mathrm{~m}\right)^{2}}=\frac{14.740}{1}
$$

So: If $14,740 \alpha$'s are seatteral $>1^{\circ} \ldots$ one win scatter $>90^{\circ}$

Cross sections, σ
Iwaqine two classical billiard balls:

(A) --

The Area of (A) and the impact parameter of A determine whether scattering will herren. $\sigma \propto A$ This "idea" $\longrightarrow \sigma$ in QM scattering

CROSS SECTIONS
Slab of wetcrial of Richness Δx and area A_{t}
impinging on it are beam particles confined to an area A_{b}

inside are some of scattering centers with projected areas, $\sigma\left(\mathrm{cm}^{2}\right)$ the density of scattering centers is n_{t} (\#tat/ cm^{3})
beam

$$
\begin{aligned}
& j_{b} \equiv \text { flux density of beam over } A_{b} \quad\left(\# \text { beam } / \mathrm{s} \cdot \mathrm{~cm}^{2}\right)=n_{b}\left(* \frac{\text { beam }}{\mathrm{cm}^{3}}\right) u_{b}\left(\frac{\mathrm{~cm}}{\mathrm{~s}}\right) \\
& \underline{J_{b}} \equiv \text { total flux }=j_{b} A_{b}=n_{b} v_{b} A_{b}(\# \text { beam } / \mathrm{s}) \ldots \text { an intensity. }
\end{aligned}
$$

target
within the beam area A_{b}, the number of scatterers is

$$
N_{t}=n_{t} A_{b} \Delta x
$$

beam parties interact when they cuevlap with target scatterers \uparrow
a very classical picture "overlap" \Rightarrow some force at work to cause interaction
probability of scattering

$$
\begin{aligned}
& d p=\frac{\text { (area of each scatterer) (number of scatters that over lap beam) }}{\text { urea of the beam }} \\
& d p=\frac{\sigma N_{t}}{A_{b}}=\frac{n_{t} A_{b} d \times \sigma}{A_{b}}=\sigma n_{t} d x
\end{aligned}
$$

chance in
number of interacting beam particles $\quad \mathrm{Nd} p$

$$
\begin{aligned}
d N=-N d p & =-N \sigma n_{t} d x \\
N(x) & =N_{0} e^{-\sigma n_{t} x} \quad=N_{0} e^{-x / \lambda} \quad \lambda \equiv \frac{1}{\sigma n_{t}}
\end{aligned}
$$

number left from "interaction length" sriairal No

The rate of interaction $\dot{N}_{e}=\frac{d N_{e}}{d t}$ for $c \operatorname{fimx} \bar{J}_{b}$ is

$$
\begin{aligned}
& \dot{N}_{e}\left(\frac{\text { events }}{s}\right)=J_{b}\left(\frac{\# b}{s}\right) \sigma\left(\mathrm{cm}^{2}\right) n_{t}\left(\frac{\#+\frac{t a t}{c}}{\mathrm{~cm}^{3}}\right) \Delta x(\mathrm{~cm}) \\
& \dot{N}_{e}=\mathscr{L} \sigma \text { where } \mathcal{L}=\text { "instantaneous luminosity" } \\
& \mathcal{L} \equiv J_{b}\left(\frac{\# b}{5}\right) n_{t}\left(\frac{\# t_{a+5}}{\mathrm{~cm}^{3}}\right) \Delta x(\mathrm{~cm}) \\
& L=\text { tetzel on "integrated (luminosity" } \\
& N_{e}=\dot{N}_{e} \Delta t=\mathcal{L} \sigma \Delta t \\
& L \equiv \int \mathcal{L} d t \rightarrow \mathcal{L} \Delta t
\end{aligned}
$$

\rightarrow some time interval
total events for $b a \rightarrow c$ depends on

1) Nature $\sigma(b a \rightarrow c)$
2) Experimental arrangement $J_{b}, n_{t}, \Delta t_{e}, \ldots$

$$
\begin{aligned}
& N_{e}=\dot{N}_{e} \Delta t=L \sigma(b a+c)=\mathscr{L} \sigma(b a+c) \Delta t \\
& N_{e}=J_{b}(b) n_{t}(a) \sigma(b a+c) \Delta x \Delta t_{e}
\end{aligned}
$$

- How thick must an iron detector be to get 1 neutrino interaction per minute?
- What's the instantaneous

$$
\begin{aligned}
& \text { luminosity? } \\
& \sigma(V N)=10^{-40} \mathrm{~cm}^{2} \\
& \rho \text { iron } 7.87 \mathrm{q} / \mathrm{cm}^{3} \\
& \Delta t=60 \mathrm{~s} \\
& N_{e}=N_{e} \Delta t=J_{b} n_{t} \Delta x \Delta t \sigma(\nu N) \\
& \Delta x=\frac{N_{e}}{J_{b} n_{t} \Delta t} \sigma(v N) \\
& \Delta x=\frac{1}{\left(10^{10}\right)\left(8.5 \times 10^{22}\right)(60)\left(10^{-40}\right)} \\
& =\frac{1}{5.1 \times 10^{-6}} \\
& \Delta x=196,078 \mathrm{~cm} \cong 2000 \mathrm{~m}=2 \mathrm{hm} \\
& \text { reed } n_{t} \text { for iron. } \\
& \begin{aligned}
n_{t} & =\frac{(\text { density })}{(\text { mass } / \text { scattered }) \rightarrow\left(\frac{\text { mass }}{\text { mole }}\right)\left(\frac{\text { ole }}{*+\text { the }}\right)} \\
& =\rho
\end{aligned} \\
& =\frac{\varphi}{\left(M_{a} / N_{A}\right)} \\
& =\frac{\left(7.87 \mathrm{~g} / \mathrm{cm}^{3}\right)}{(56 \mathrm{q} / \text { mole })\left(\frac{1}{\left.6.02 \times 10^{23} \mathrm{tat} / \text { male }\right)}\right.} \\
& n_{t}=8.5 \times 10^{22} \#+\pi / \mathrm{cm}^{3}
\end{aligned}
$$

The luminosity

$$
\begin{aligned}
\mathcal{L} & =J n_{t} \Delta x \\
& =\left(10^{10}\right)\left(8.5 \times 10^{22}\right)(196,078) \\
\mathcal{L} & =1.67 \times 10^{3 i} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
\end{aligned}
$$

intergoted $L=1(60)=9.9 \times 10^{39} \mathrm{~cm}^{-2}$

Standard units are "barns" for cross sections

$$
1 b=10^{-28} \mathrm{~m}^{2}\left(\frac{100}{\mathrm{~m}} \mathrm{~cm}\right)^{2}=10^{-24} \mathrm{~cm}^{2}
$$

So our $\sigma(V N)=10^{-40} \mathrm{~cm}^{2}\left(\frac{1 b}{10^{-24} \mathrm{~cm}^{2}}\right)=10^{-3} \mathrm{~b}$

$$
\begin{aligned}
& \begin{array}{lll}
10^{-3} & \operatorname{mb} \\
10^{-6} & \mu b & \sigma(u N)
\end{array} \quad 0.1 \mathrm{fb}=100 \mathrm{ab} \text { tint. } \\
& 10^{-9} \mathrm{nb} \quad \text { standard units in L... inverse-barn-units } \\
& 10^{-12} \quad p^{b} \\
& 10^{-15} \mathrm{fb} \\
& L\left(\frac{1}{\mathrm{~cm}^{2}}\right)\left(\frac{10^{-24} \mathrm{~cm}^{2}}{b}\right)=L \times 10^{-24} b^{-1} \\
& \text { so: } 9.9 \times 10^{39} \frac{1}{\mathrm{~cm}^{2}}\left(\frac{10^{-29} \mathrm{~cm}^{2}}{b}\right)\left(\frac{10^{-15} b}{\mathrm{fb}}\right)=9.9 \mathrm{fb}^{-1}
\end{aligned}
$$

What about a red detcetn?

subtends a solid acuate patch
area of patch: $d A=(R \sin \theta d \varphi)(R d \theta)$
differential solid angle: $\quad d \Omega=\frac{d A}{R^{2}}=\sin \theta d \theta d \varphi$
Scattering rate into $\Delta \Omega$

$$
\dot{N}_{e}=J_{b} n_{t} \Delta x \frac{d \sigma}{d \Omega} \Delta \Omega
$$

^ cafonlatel or meas wed.

$$
\dot{N}_{e}=J_{b} n_{t} \Delta x \frac{d \sigma}{d \Omega} \Delta \Omega
$$

^ calanlatel or measured.
$\Delta \Omega=\frac{\text { area of detecter tace }}{R^{2}}$

$$
\frac{d N_{e}}{d \Omega}=J_{b} n_{t} \Delta x \frac{d \sigma}{d \Omega}
$$

Let's finish our calculation aud aim for $\frac{d r}{d \Omega}$ in Rusher ford Scattering.

We had:

$$
\begin{aligned}
\dot{N}_{e}\left(\frac{\text { events }}{s}\right)=J_{b}\left(\frac{\# b}{s}\right) \sigma n_{t} \Delta x \xi \quad b & =\frac{c}{2} \cot \theta / 2 \\
c & =\frac{z_{1} z_{2} e^{2}}{4 \pi t_{0} k}
\end{aligned}
$$

$$
p=\frac{\dot{N}_{e}}{J_{b}}=\sigma n_{t} \Delta x \rightarrow \text { now thin target } . .
$$

$$
\begin{aligned}
d p & =n_{t} \Delta x d \sigma \\
d p & =n_{t} \Delta \times 2 \pi b d b \\
& =-n_{t} \Delta \times 2 \pi \frac{c}{2} \cot \theta / 2 \frac{c}{4} \csc ^{2} \theta / 2 d \theta \\
d p & =-n_{t} \frac{\Delta x}{4} \frac{\cos \theta / 2}{s^{3} \theta / 2} c^{2} d \theta
\end{aligned}
$$

$$
\dot{N}(\theta)_{e} d \theta=-J_{b} d p
$$

Γ_{a} decrease in $b \rightarrow$ increase in $d \theta$
(1)

$$
\begin{aligned}
\dot{N}(\theta)_{e} d \theta & =J_{b} n_{t} \Delta x \frac{\pi}{4} \frac{\cos \theta / 2}{\sin ^{3} \theta / 2} c^{2} \\
& =J_{b} n_{t} \Delta x \frac{\bar{n}}{8} \frac{\sin \theta}{\sin ^{4} \theta / 2} c^{2} d \theta
\end{aligned}
$$

reweuber:

$$
\begin{equation*}
\dot{N}_{c}=J_{b} n_{t} \Delta x \frac{d r}{d \Omega} \Delta \Omega \tag{4}
\end{equation*}
$$

plus: $\quad d \Omega=2 \pi \sin \theta d \theta=\sin \theta d \theta d \phi$
cafculatel or measwer
we can
(2) identify

$$
\frac{d \sigma}{d \Omega}=\left(\frac{1}{4 \pi t_{0}}\right)^{2}\left(\frac{z_{1} z_{2} e^{2}}{4 K}\right) \frac{1}{\sin ^{4} \theta / 2}
$$ using (3) and (4) DS

Rotherfind Cross Sectim
A touchstone for scattering
a taste...
\longrightarrow assumes the "atoms" are point-like

- classical \longrightarrow can be extended to QM... same form
- non-redativistic \longrightarrow can be wade relativistic

How close cowed Reuther ford et ad. go?

$$
\begin{array}{lr}
E_{B}=E_{A} & \text { just stops } \\
K_{\alpha}=\frac{1}{4 \pi \epsilon_{0}} \frac{z_{1} z_{2} e^{2}}{R_{\min }} & \mathrm{KE} \mathrm{\rightarrow PE}
\end{array}
$$

$\alpha ' s: K=7.7 \mathrm{MeV}$
target: gold

$$
\begin{aligned}
R_{\text {min }} & =\frac{\left(8.99 \times 10^{9}\right)(2)(79)\left(1.6 \times 10^{-19}\right)^{2}}{\left(7.7 \times 10^{6}\right)\left(1.6 \times 10^{-19}\right)} \\
& \simeq 3 \times 10^{-14} \mathrm{~m}
\end{aligned}
$$

$$
R(\text { qord }) \sim 0.2 \times 10^{-14} \mathrm{~m}
$$

not penetrating gold nucleus

Relativistic Rutherford: Mot Scattering

still print -like

Fig. 5. Elastic electron scattering cross sections from hydrogen compared with the Mott scattering formula (electrons scattered from a particle with unit charge and no magnetic moment) and with the Rosenbluth cross section for a point proton with an anomalous magnetic moment. The data falls between the curves, showing that magnetic scattering is occurring but also indicating that the scattering is less than would be expected from a point proton.

1960's... deviates from Mot

Fig. 23. Summary of results on nuclear form factors presented by the Stanford group at the 1965 "International Symposium on Electron and Photon Interactions at High Energies". (A momentum transfer of $1 \mathrm{GeV}^{2}$ is equivalent to 26 Fermis ${ }^{-2}$.)

1913

 may very well be another profound truth.

Niels Bohr
$1885-1962$
a talker.

Rutherford not disposed kindly

towards theoretical physicists
but he saw something in young Bohr and in 1912 hired him to Manchester away from a grumpy JJ Thompson "He's different! He's a football player!"

In 1913 Bohr simply asserted

That at atomic distances...
there are electron orbits that simply
don't radiate - "stationary states"
fixed "quantized" orbital radii and
orbital velocities

The Hydrogen Atom (the proton not yet discovered!)

The Bohr
 Model

for any atom
with one electron on the outside shell

With each radius and velocity...comes a distinct energy.

$$
E_{n}=-\underbrace{\frac{1}{2} \frac{4 \pi^{2} k^{2} e^{4}}{h^{2}} \frac{1}{n^{2}}}_{\text {just numbers... }}=-C\left(\frac{1}{n^{2}}\right)
$$

$$
E_{n}=-(13.6) \frac{1}{n^{2}} \mathrm{eV}
$$

Hydrogen spectrum

light emitted by Hydrogen was at particular wavelengths...

already known

but apparently not by Bohr!
in 1885 Johann Balmer played and found a pattern:

$$
\frac{1}{\lambda}=R_{H}\left(\frac{1}{2}-\frac{1}{n^{2}}\right) \mathrm{n}=3,4,5 \ldots
$$

$$
1.09737{\mathrm{x} 10^{7} \mathrm{~m}^{-1}}^{1}
$$

When Bohr learned of the old Balmer idea

aha! moment

energy
differences could matter

the magic:

the idea of an atomic transition

$$
-13.6 \mathrm{eV} \quad \mathbf{n}=\mathbf{2}-3.4 \mathrm{eV}
$$

The idea: transition of electrons results in the released energy of a photon...of a particular energy

imagine his surprise

1913: his way.

$$
-13.6 \mathrm{eV} \quad \mathbf{n}=\mathbf{2}-3.4 \mathrm{eV}
$$

$$
\begin{aligned}
& E_{2}-E_{1}=(13.6 \mathrm{eV})\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)=h f \\
& E_{2}-E_{1}=10.1 \mathrm{eV} \longrightarrow \lambda=122 \mathrm{~nm}
\end{aligned}
$$

hydrogen, fine

how about more complex elements?

(e)
(e)
(e)

Higher atomic number, Z?
lots of electrons, but as long as there's one lone one..the Bohr Formula still works.

$$
E_{f}-E_{i}=-\frac{1}{2} \frac{4 \pi^{2} \sqrt{2}^{2} Z^{2} \theta^{4}}{h^{2}}\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right)=-h f
$$

Go looking for new elements....

yup, 1922

Nobelprize.org
The Official Web Site of the Nobel Prize

Home / Nobel Prizes / Nobel Prize in Physics / The Nobel Prize in Physics 1922

About the Nobel Prizes	的Printer Friendly	(T) Share	\square Tella a Friend	Q Comme	
Facts and Lists	1901		2012		
			Prize category: Physics		
All Nobel Prizes in Physics	Sort and list Nobel Prizes and Nobel Laur \uparrow				

All Nobel Prizes in Physics
Facts on the Nobel Prize in Physics
Prize Awarder for the Nobel
Prize in Physics Prize in Physics
Nomination and Selection of Physics Laureates
Nobel Medal for Physics Articles in Physics Video Interviews
Video Nobel Lectures
Nobel Prize in Chemistry
Nobel Prize in Physiology or Medicine

Nobel Prize in Literature
Nobel Peace Prize
Prize in Economic Sciences
Nobel Laureates Have Their Say
Nobel Prize Award Ceremonies
Nomination and Selection of Nobel Laureates

The Nobel Prize in Physics 1922 Niels Bohr

The Nobel Prize in Physics 1922	*
Niels Bohr	*

Niels Henrik David Bohr
The Nobel Prize in Physics 1922 was awarded to Niels Bohr "for his services in the investigation of the structure of atoms and of the radiation emanating from them".

Photos: Copyright © The Nobel Foundation

TO CITE THIS PAGE:

MLA style: "The Nobel Prize in Physics 1922". Nobelprize.org. 14 Mar 2013 htp://www.nobelprize.org/nobel_prizes/physics/aureates/1922/

