4. Structure of the Atom, 2

lecture 17, October 9, 2017

housekeeping

exam 2: Friday, October 27 This week:

lecture MTW...we'll see about Friday

HW4 due Friday

Honors option

Go to: <u>https://qstbb.pa.msu.edu/storage/PHY215/honors/</u>

read the Minervalnstructions1_2017_215 document

finish

Rutherford Scattering soliloquy on "cross sections" The "Bohr Atom"

finish

Rutherford Scattering soliloquy on "cross sections" The "Bohr Atom"

 $m, Z_i e, \vec{p}$ 0=0 cot 9/2=00 => b= ~ "bean" forward G $\cot \theta_{2} = 1$ $b = \frac{3 \cdot 2 \cdot e^{2}}{4 \pi e_{0} m v_{0}^{2}}$ 0=12 M, Z, e "target" $b = \frac{z_{1}z_{2}e^{2}}{4\pi\epsilon_{1}}\cos^{2}(1+e^{2})$ 0= Th cot 0/2 = 0 => b=0 bachward. Smaller b => larger 0 For a single mucleus .-if b is between band b+db, O will be between Davd O+dO what's the likelihood of "scattering into a particular direction? glad you asked " Cross section

What implact parameter will cause scattering for
$$x \neq 7.7$$
 NeV on gold
10 $\overline{2}$
90 $\overline{2}$
 $b = \overline{2}_{1}\overline{2}_{2}e^{2}$ cot $\overline{6}_{12}$ $K = 7.7$ NeV ... assume clossical
 $4\pi \overline{2}_{0}$ mu³
 $K = \frac{1}{2}ma^{2}$
 $Ma^{3} = 2K$
 $b = \frac{2}{2}\cdot\overline{2}_{2}e^{2}$ cot $\overline{9}_{2}$ $\overline{2}_{2} = 79$ $\overline{2}_{1} = 2$ 7.7 NeV = 1.2×10^{12} J
 $4\pi \overline{2}_{0} 2K$
 $b = \frac{2}{4\pi}\overline{2}_{0}E^{2}$ $Cot \overline{9}_{2}$ $\overline{2}_{2} = 79$ $\overline{2}_{1} = 2$ 7.7 NeV = 1.2×10^{12} J
 $4\pi \overline{2}_{0} 2K$
 $b = \frac{(2)(79)(16 \times 10^{19})}{(4\pi)(8.85 \times 10^{-12})(1.2 \times 10^{-12} \text{ J})(2)}$
frv 1° $b = 1.7 \times 10^{-12}$ m
fn \overline{W}_{2} $b = 1.4 \times 10^{-14}$ m

What is the propositivity for deflection >1° compared to >9° ?
for 1° b = 1.7 × 10⁻¹² m So >1°, b < 1.7 × 10⁻¹² m or
for
$$\overline{W}_2$$
 b = 1.4 × 10⁻¹⁴ m Su >90°, b < 1.4 × 10⁻¹⁴ m.
or areas
>1° \longrightarrow \overline{M}_2^{-1-1} \overline{M}_2^{-1-1-1}
>90° \longrightarrow \overline{M}_2^{-1-1-1}
 $70° \longrightarrow$ \overline{M}_2^{-1-1-1}
the area convergending to a given deflection \equiv cross section, \overline{M}_2^{-1}
beams are vandomly aimed of atom, so
 $\frac{P(>1°)}{P(>9°)} = \frac{\pi(1.7 \times 10^{-12} m)^2}{\pi(1.4 \times 10^{-14} m)^2} = 14.740$
So: 1f 14,740 x's are scattered >1° ... one with scatter >9°

Cross sections, 0 Twagine two classical billiard balls: The Avea of (A) and the impact parameter of E) determine whether scattering will happen. Tak This "idea" -> J in QM scattering

CROSS SECTIONS slab of material of Michness DX and area At inside are some # of scattering centers impinging on it are with projected areas, $\sigma(cm^2)$ beam particles the density of scattering centers is nt (# tot 3) confined to an ΔX area Ab beam $\underbrace{j_{b}}_{b} = flux \text{ density of beam over } A_{b} \left(\frac{\#bcan}{s.cm^{2}} \right) = n_{b} \left(\frac{\#beam}{cm^{3}} \right) \underbrace{v_{b}}_{b} \left(\frac{cm}{s} \right)$ $\underbrace{J_{b}}_{b} = total flux = j_{b} A_{b} = n_{b} v_{b} A_{b} \left(\frac{\#beam}{s} \right) \dots an intensity.$ target within the beam area Ab, the number of scatterers is NE = NEABAX

The vale of interaction
$$N_e = \frac{dN_e}{dt}$$
 for $c f(u \times J_b)$ is
 $N_e \left(\frac{events}{s}\right) = J_b \left(\frac{\#b}{s}\right) \sigma \left(cm^2\right) n_b \left(\frac{\#t_{tot}}{cm^3}\right) \Delta \times (cm)$
 $N_e = \mathcal{L} \sigma \quad where \quad \mathcal{L} = \text{"instantaneous luminosity"}$
 $\mathcal{L} = \mathcal{L} \sigma \quad where \quad \mathcal{L} = \text{"instantaneous luminosity"}$
 $\mathcal{L} = \frac{1}{t_s} \left(\frac{\#b}{s}\right) n_b \left(\frac{\#t_{tot}}{cm^3}\right) \Delta \times (cm)$
 $L = \frac{1}{t_s} \sigma \quad where \quad \mathcal{L} = \frac{1}{t_s} \left(\frac{\#t_{tot}}{cm^3}\right) \Delta \times (cm)$
 $L = \frac{1}{t_s} \sigma \quad where \quad \mathcal{L} = \frac{1}{t_s} \left(\frac{\#t_{tot}}{cm^3}\right) \Delta \times (cm)$
 $L = \frac{1}{t_s} \sigma \quad where \quad \mathcal{L} = \frac{1}{t_s} \left(\frac{\#t_{tot}}{cm^3}\right) \Delta \times (cm)$
 $L = \frac{1}{t_s} \sigma \quad where \quad \mathcal{L} = \frac{1}{t_s} \left(\frac{\#t_{tot}}{cm^3}\right) \Delta \times (cm)$
 $L = \frac{1}{t_s} \left(\frac{\#t_{tot}}{cm^3}\right) \Delta \times ($

vs . thou thich must an iron detector be to get 1 Fe neutrino interaction per minute? <--- DX ----> · What's the instantaneous $G(VN) = 10^{-40} cm^2$ piron 7.87 9/cm3 Uninosity? J=10 neutrinos $\Delta t = 60 s$ $N_e = N_e \Delta t = J_b n_e \Delta X \Delta t G(UN)$ $\Delta x = \frac{Ne}{J_b n_t \Delta t J(vN)}$ need not for ivon. n+ = (density) (mass/scatterer) ~ (mass) (mole) (#tot Δx = ____ $(10^{10})(8.5\times10^{22})(60)(10^{-40})$ = 4 (Ma/NA) = 1 5,1×10-6 = (7.83 9/cm3) Ax = 196,078 cm = 2000 m = Zhan (56 9/male) (6.02 × 10 tat/mole) NE = 8,5×10 #+1/ Cm3

The luminosity
$$J = Ja_{\pm} \Delta x$$

 $= (10^{10})(8.5 \times 10^{22})(196,078)$
 $J = 1.67 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$
 $inAccepted L = J(60) = 9.9 \times 10^{31} \text{ cm}^{-2}$
Standard units are "borns" for cross sections
 $1 b = 10^{-28} \text{ m}^2 (100 \text{ cm}^2) = 10^{-24} \text{ cm}^2$
so our $O(vN) = 10^{-90} \text{ cm}^2 (\frac{16}{10^{-24} \text{ cm}^2}) = 10^{-16} \text{ b}$
 10^{53} mb
 10^{5} µb
 10^{5} µb
 10^{5} µb
 10^{57} pb
 10^{57} fb
 10^{57} fb
 10^{58} ab
 10^{58} ab
 $50: 9.9 \times 10^{37} \frac{1}{6} (\frac{10^{-24} \text{ cm}^2}{6})(10^{-15} \text{ b}) = 9.9 \text{ fb}^{-1}$
 10^{-18} ab
 $50: 9.9 \times 10^{37} \frac{1}{6} (\frac{10^{-24} \text{ cm}^2}{6})(10^{-15} \text{ b}) = 9.9 \text{ fb}^{-1}$

Ne = Jong ax dr AR I calculated or weaswed SIR = area of detection take RZ db db different do do dNe = Juneax de dr Jr 0 and so on let's finish our calculation and aim for de fn dr Retner For & Scattering.

We had:
$$N_e\left(\frac{events}{s}\right) = J_e\left(\frac{\#b}{s}\right) G N_b \Delta x \notin b = \frac{c}{2} \operatorname{cot} \theta_2$$

 $C = \frac{2}{2! \frac{2}{5}} e^2$
 $4\pi 6_0 K$
 $p = \frac{N_e}{J_b} = G N_b \Delta x \rightarrow naw thin target...$
 $dp = n_b \Delta x dG$
 $dp = n_b \Delta x dG$
 $dp = n_b \Delta x 2\pi b db$
 $= -N_b \Delta x 2\pi \frac{c}{2} \operatorname{cot} \theta_2 \frac{c}{2} \operatorname{cosc}^2 \theta_2 d\theta$.
 $dp = -N_b \Delta x \pi \frac{\omega s \theta_2}{4} c^2 d\theta$

 $\dot{N}(\theta)_e d\theta = -J_b d\rho$ $\tilde{I}_a decrease in b \rightarrow increase in d\theta$ $\dot{N}(\theta)_e d\theta = J_b u_e \Delta \times \pi \cos^{\theta} 2 C^2$ $4 \sin^{3\theta} 2$ = Jbut DX 10 sint c2d0 8 sin49/2 vewenber: Scattering rate into AD $N_e = J_b n_b \Delta x d\Gamma \Delta \Omega$ pins: $d\mathcal{R} = 2\pi \sin\theta d\theta = \sin\theta d\theta d\phi (4)$ I calculated or weaswed go from () to (2) we can $\frac{d\sigma}{d\sigma} = \left(\frac{1}{4\pi\epsilon_0}\right) \left(\frac{2}{4\epsilon} \frac{2}{2\epsilon^2}\right) \frac{1}{\epsilon_0} \quad \text{Using (3) and (4)}$ i dentify DS

Romenford Cross Section

A touchstone for scattering

a taste ...

> assumes the "atoms" are point-like

· classical -> can be extended to QM ... same form

· non-relativistic -> can be wade relativistic

How close could Rumarford et al. 50? x just stops KE - PE $E_{\rm R} = E_{\rm A}$ que, $K_{\alpha} = \frac{1}{4\pi \epsilon_{0}} \frac{z_{1} z_{2} e^{2}}{R_{min}}$ Ruin $R_{\text{win}} = Z_1 Z_2 e^2$ 4TTEK L'S : K = 7.7 MeV Ruin = (8.99×10)(2)(79)(1.6×10) target: gold (7.7×10°)(1.6×10-19) ~ 3×10 m not penetrating gold nucleus R(qoid)~ 0.7×10 m

1913

Niels Bohr

1885-1962

a talker.

The opposite of a profound truth may very well be another profound truth.

6

Rutherford not disposed kindly

towards theoretical physicists

but he saw something in young Bohr and in 1912 hired him to Manchester away from a grumpy JJ Thompson "He's different! He's a football player!"

In 1913 Bohr simply asserted

That at atomic distances...

there are electron orbits that simply don't radiate - "stationary states" fixed "quantized" orbital radii and orbital velocities

The Hydrogen Atom (the proton not yet discovered!)

The Bohr Model

for any atom with one electron on the outside shell

With each radius and velocity...comes a distinct energy.

$$E_n = -\frac{1}{2} \frac{4\pi^2 k^2 e^4}{h^2} \frac{1}{n^2} = -C\left(\frac{1}{n^2}\right)$$

just numbers...

$$E_n = -(13.6)\frac{1}{n^2} \text{ eV}$$

410 nm 486 nm 434 nm 656 nm

light emitted by Hydrogen was at particular wavelengths... in 1885 Johann Balmer played and found a pattern:

already known

but apparently not by Bohr!

 $1.09737 \text{ x } 10^7 \text{ m}^{-1}$

 $\frac{1}{\lambda} = R_H \left(\frac{1}{2} - \frac{1}{n^2}\right) \, n = 3, 4, 5...$

Hydrogen spectrum

When Bohr learned of the old Balmer idea

aha! moment

energy differences could matter

the magic:

the idea of an atomic transition

The idea: transition of electrons results in the released energy of a photon...of a particular energy

hydrogen, fine

how about more complex elements?

Higher atomic number, Z?

amu

P

4.003

lots of electrons, but as long as there's one lone one..the Bohr Formula still works.

Atomic Number
or Proton
Number(Z) = # of electrons also!
$$E_f - E_i = -\frac{1}{2} \frac{4\pi^2 k^2 Z^2 e^4}{h^2} \left(\frac{1}{n_i^2} - \frac{1}{n_f^2}\right) = -hf$$
Elemental
Symbol
Atomic Mass in

Go looking for new elements....

yup, 1922

actually with Einstein's delayed prize

