4. Structure of the Atom, 3

lecture 18, October 10, 2017

housekeeping

I got nothin'

exam 2: Friday, October 27

This week:

lecture MTW...we'll see about Friday

HW4 due Friday

Honors option

Go to: <u>https://qstbb.pa.msu.edu/storage/PHY215/honors/</u>

read the Minervalnstructions1_2017_215 document

continuing

The "Bohr Atom"

Rutherford not disposed kindly

towards theoretical physicists

but he saw something in young Bohr and in 1912 hired him to Manchester away from a grumpy JJ Thompson "He's different! He's a football player!"

In 1913 Bohr simply asserted

That at atomic distances...

there are electron orbits that simply don't radiate - "stationary states" fixed "quantized" orbital radii and orbital velocities

The Hydrogen Atom (the proton not yet discovered!)

The Bohr Model

for any atom with one electron on the outside shell

With each radius and velocity...comes a distinct energy.

$$E_n = -\frac{1}{2} \frac{4\pi^2 k^2 e^4}{h^2} \frac{1}{n^2} = -C\left(\frac{1}{n^2}\right)$$

just numbers...

$$E_n = -(13.6)\frac{1}{n^2} \text{ eV}$$

410 nm 486 nm 434 nm 656 nm

light emitted by Hydrogen was at particular wavelengths... in 1885 Johann Balmer played and found a pattern:

already known

but apparently not by Bohr!

 $1.09737 \text{ x } 10^7 \text{ m}^{-1}$

 $\frac{1}{\lambda} = R_H \left(\frac{1}{2} - \frac{1}{n^2}\right)$ n = 3, 4, 5...

Hydrogen spectrum

When Bohr learned of the old Balmer idea

aha! moment

energy differences could matter

the magic:

the idea of an atomic transition

The idea: transition of electrons results in the released energy of a photon...of a particular energy

hydrogen, fine

how about more complex elements?

Higher atomic number, Z?

4.003

lots of electrons, but as long as there's one lone one..the Bohr Formula still works.

Atomic Number
or Proton
Number(Z) = # of electrons also!
$$E_f - E_i = -\frac{1}{2} \frac{4\pi^2 k^2 Z^2 e^4}{h^2} \left(\frac{1}{n_i^2} - \frac{1}{n_f^2}\right) = -hf$$
Elemental
Symbol
Atomic Mass in
amu

Go looking for new elements....

yup, 1922

actually with Einstein's delayed prize

Bohr Model

- · electron in atom moves in cirular orbits classical dynamics
- · own specific orbits allowed
- · electrons do not vadiate away energy.
- . every variated only when changing about from high to low

He grantized angular momentum.

$$L = n\hbar$$
 $\hbar = \frac{h}{2\pi}$ $n = 1, 2, 3. - - 2\pi$

Envagy
$$U = -\int_{r}^{d} \frac{2e^{2}}{4\pi\epsilon_{0}r^{2}} dr = -\frac{2e^{2}}{4\pi\epsilon_{0}r^{2}}$$

 $K = \frac{1}{2}mv^{2} = \frac{2e^{2}}{4\pi\epsilon_{0}}2r$
 $E = K + U = -\frac{2e^{2}}{4\pi\epsilon_{0}}2r$
 $E = K + U = -\frac{2e^{2}}{4\pi\epsilon_{0}}2r$
 $Use r_{n}$: $E_{n} = -\frac{mz^{2}e^{4}}{(4\pi\epsilon_{0})^{2}zh^{2}}\frac{1}{n^{2}}$
For hydrogen and $n=1$: $E_{1} = -\frac{(q \times i\delta)^{2}(q.11 \times i\delta^{-31})(1.6 \times i\delta^{-1})^{4}}{(2)(1.05 \times i\delta^{-34})^{2}}$
 $E_{1} = -2.(7 \times 10^{-18} \text{ J} = -13.6 \text{ eV}$

Radiation? Rydheve Formula: $\frac{1}{12} - \frac{1}{12}$ $\frac{L}{\lambda} = R_{\rm H}$ Ei-Ef $= \left(\frac{1}{4\pi\epsilon_{o}}\right)^{2} \frac{mz^{2}}{4\pi\pi^{2}} \left(\frac{1}{n_{c}^{2}} - \frac{1}{n_{i}^{2}}\right)$ Rudberg Constant for hydrogen 1.0967 × 10⁷ m⁻¹ $f \lambda = c$ $\frac{C}{\lambda} = \left(\frac{L}{4\pi\epsilon_{o}}\right)^{2} \frac{m z^{2} e}{4\pi k^{3}}$ $(1)^{2} \underline{mze}^{4} \left(\frac{1}{n_{c}^{2}} - \frac{1}{n_{i}^{2}} \right)$ $(4\pi t_{b}^{3} c) \left(\frac{1}{n_{c}^{2}} - \frac{1}{n_{i}^{2}} \right)$ $\frac{1}{\lambda} =$... calculater RH Ra

$$r_{n} = \frac{n^{2}}{2} \left(\frac{T_{n}}{m_{c} \alpha} \right) \qquad \alpha = \frac{e^{2}}{4\pi\epsilon_{0}\hbar\epsilon_{0}} \qquad \text{"fine structure caustant"} \\ = \frac{1}{2} \frac{1}{2}$$

Erevaies again ... $E_n = - \frac{e^2 z^2}{8\pi\epsilon_0} = -\frac{t^2 z^2}{2ma_0^2 n^2}$ $E_n = -\frac{1}{2}m\left(\frac{2}{n}e^2\right)$ or $E_n = -13.6\frac{2^2}{n^2}e^{\sqrt{n^2}}$ Seemed to not work for ionized the. $\frac{z^2}{\frac{z^2}{4e}} = 4$ $\frac{R_{os}(He)}{R_{os}(H)} = \frac{(1)^{2} m^{2} He}{4\pi \epsilon_{o}} \frac{4\pi \hbar^{3} c}{4\pi \hbar^{3} c} =$ $(1)^2 m_{H}^2 e^4$ $(4\pi\epsilon_0)^4\pi h^3c$ 2 expt: 4.0016

Bohr repled: ---x-deal with reduced wass, p e,m N,M $\frac{1}{\mu} = \frac{1}{m} + \frac{1}{M}$ $\mu = \frac{mM}{M+m} = \frac{m}{m/m}$ ~~~~ (1-m) $\frac{R_{ob}(He)}{R_{ob}(H)} = \frac{\left(1 - \frac{m}{4M_{p}}\right)}{\left(1 - \frac{m}{M_{p}}\right)} \frac{Z_{He}^{2}}{Z_{He}^{2}} = 4.00162$ $\frac{R_{ob}(H)}{\left(1 - \frac{m}{M_{p}}\right)} \frac{Z_{He}^{2}}{Z_{He}^{2}} = \frac{4.00162}{M_{p}}$ 50 modern __ Bohr: 4.00163 Bohr is a major figure in physics => Instantly !

H.G.J. Moseley

Lecturer at Manchester University

expert in Xvay emission & absorption

Moseley E. Bohr takked a lot ...

Periodic Toble:

Thought to be organized according to atomic wass, A.

So potassium A=39.10 and augon A=39.95 should be ordered:

K then Av

B Grouppo I. Grouppo II. Grouppo II. Grouppo II. Grouppo V. Rift Rift	Grupps VII RH R [±] 0'	I. Gruppo VIII. R04				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	F=19 Cl=355 Mn=65 8 Br=8 -=100 5 J=12 - -	5 Fo=60 Co=69, NI=60 Co=63, NI=104, Rh=104, Pd=106, Ag=108 27 	ち when Av inclus velotive to K	sech, wrong		
How did we get 1		¹ Periodic Table of the Elements ² ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹				
firm here organized by A		Libian Be Beryfilm 13 Na Mg 505400 3 4 5	6 7 8 9 10 11	B C N O F Ne 1211 1212 <		
tohere	5	19 20 21 22 23 2 19 20 Sc Sc Sc 2 10 2 19 20 Sc Sc Sc Sc 10 10 10 10 17 Rb Sr 38 P 40 Ar Nb 10 17 Rb Sr P Vituar Zituar Nb 2	14 25 26 27 28 29 8 Churdwall FFe Columna Columna Model Columna Columna <td>2 33 12 33 14 55 86 2 63 Ge AS See 87 Kr Kr 2 63 Ge AS See See Kr Kr 3 63 Graves Areas See See Kr Kr 5 64 70 So S So See See Kr Kr 6 Cd Annex See See See See See Kr Kr 6 Cd See See</td>	2 33 12 33 14 55 86 2 63 Ge AS See 87 Kr Kr 2 63 Ge AS See See Kr Kr 3 63 Graves Areas See See Kr Kr 5 64 70 So S So See See Kr Kr 6 Cd Annex See See See See See Kr Kr 6 Cd See		
organized by Z		Fr Ra 87-01 Resum 10-04 Resum 10-04 Resum 10-04 Resum 10-04 Resum 10-04 Resum 10-04 Resum 10-04 Resum 10-04 Resum 10-04 Resumm 10-04 Resumm	76 76 76 77 78 78 78 78<	Bit		
Moseley		228.03 (24) (24) (24) (24) (25) (25) (25) (25) (25) (25) (25) (25	DBM DBM <td>(27) uteran (28) uteran (18)</td>	(27) uteran (28) uteran (18)		
		227.028 232.038 233 Alkali Metal Alkaline Earth Transit	1.016 238.029 237.048 244.064 248.061 247.070 241 tion Metal Basic Metal Semimetal Nonmetal Hal	200 251.080 (254) 257.095 256.1 259.305 (242) ogen Noble Gas Lanthanide Actinide		

Moseley was without exception or exaggeration the most brilliant man – and the hardest worker I have ever met. There were of course no regular meals, and work often went on for most of the night. Indeed one of Moseley's expertises was the knowledge of where one could get a meal in Manchester at 3 o'clock in the Morning.

Charles Galton Darwin in a 1916 obituary of Harry.

MADNESS OF WWI

	Dead	Wounded	or POW	Total
Ottoman Empire	56,643	97,007	11,178	164,828
United Kingdom	34,072	78,520	7,654	120,246
France	9,798	17,371	-	27,169
Australia	8,709	19,441	-	28,150
New Zealand	2,721	4,752	-	7,473
British India	1,358	3,421	-	4,779
Newfoundland	49	93	_	142
Total Allies	56,707	123,598	7,654	187,959

14 July 1915

We moved yesterday to a place where the road is worse than the flies. Sand in boots clothes mouth eyes hair. Sand in the food and the water and the air. All my kit is in danger of being buried. The men are not bearing the heat very well.

Letter from Harry to his mother sent from Gallipoli

BOHR CORRESPONDENCE PRINCIPLE

"Old quantum theory - entirely Bohr - a hodge - podge of weived ideas and claims ... that worked. Unsatisfying

began a troubling relationship with quantum mechanics in 1913...

[" attempt :

In the limiting case of large quantum numbers, frequencies and intensities of variation:

quantum vesults -> classical results

quantum frequency in Large a transitioning to n-1 $f_{\omega} = \frac{e^{f}}{4\pi (4\pi \epsilon)^{2}} \frac{me}{\hbar^{3}} \left[\frac{1}{(n-i)^{2}} - \frac{1}{n^{2}} \right]$ $f_{Q} = \frac{e^{4}}{4\pi} \frac{M_{e}}{4\pi} \frac{2n-1}{n^{2}(n-1)^{2}}$ nis very large -- n-1 ~ n & 2n-1 ~ 2n $f_{Q} \rightarrow \underbrace{e^{4}}_{4\pi} \underbrace{m_{e}}_{4\pi} \underbrace{zn}_{n^{3}} = \underbrace{me^{4}}_{n^{4}} \underbrace{1}_{32\pi^{3}} \underbrace{1}_{60} \underbrace{1}_{n^{3}} \underbrace{1}_{n^{3}}$ this guy jumps $f_2 = \frac{e^4 m_e}{32 \epsilon_0^2 \pi^3 \pi^3 n^3}$ < this guy radiates because it spirals Became a quide later-a