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housekeeping

exam 1 was last friday ;) 

actually, next one is scheduled for Friday, 3 Nov 

I may make it a week early 

Honors option 

Go to: https://qstbb.pa.msu.edu/storage/PHY215/honors/ 

read the MinervaInstructions1_2017_215 document



more detail of some of the goings-on

in the 19th and early 20th Centuries 

black body radiation 
photoelectricity 

x-rays 
Compton scattering
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more  useful Is the radium
rather than the  BB itself
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Wien 's Radiation Law
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Another
approach
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purely EEM

Lord Raleigh
& James Jeans 1900 - 1905 ( after  Planck )
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He too :
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measurements by Beckmann, etc

alignment of the surfaces of “Flussspath”

calculated by Planck etc

blackbody from….something ;)
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PLANCK 's CONSTANT  IN
MANY GUISES
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Seibert, James. (2004). X-ray imaging physics for nuclear medicine 
technologists. Part 1: Basic principles of x-ray production. Journal 

of nuclear medicine technology. 32. 139-47. 
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