7.
 Hydrogen Atoms,4

lecture 27, October 32, 2017
I crack myself up sometimes

housekeeping

I got nothin'

today

Hydrogen atom, more

(

Where we were!
Schrodinger equation for 3 dimensional configuration

$$
\begin{aligned}
& \left.\begin{array}{l}
-\frac{\hbar^{2}}{2 \mu}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)\right.
\end{array} \quad+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right] \psi(r, \theta, \phi) \\
& \\
& \begin{array}{l}
\text { reduced } \\
\text { mass }
\end{array} \\
& -\frac{e^{2}}{4 \pi \epsilon_{0} r} \psi(r, \theta, \phi)=E \psi(r, \theta, \varphi) \\
& R_{n l}(r)=-\left[\left(\frac{2}{n a_{0}}\right) \frac{(n-l+1)!}{2 n[(n+l)!]^{3}}\right]^{\frac{1}{2}}\left(\frac{2 r}{n a_{0}}\right)^{l} e^{-r / n a_{0}} L_{n+l}^{2 l+1}\left(\frac{2 r}{n a_{0}}\right) \\
& \psi_{n l m_{l}}(r, \theta, \phi)=R_{n l}(r) Y_{l}^{m_{l}}(\theta, \phi) \quad E_{n}=\frac{e^{4}}{\left(4 \pi \epsilon_{0}\right)^{2}} \frac{\mu}{\hbar^{2} 2 n^{2}}
\end{aligned}
$$ "eigenfunctions"

"eigenvalues"
quANTUM NUMBERS of the QUANTVM CENTRAL FORCE SOUTION
n: Principle Quantum Number

$$
n=1,2,3 \ldots \infty
$$

Q: Orbital Angular Momentum Quantum Number

$$
l=0,1,2 \ldots(n-1) \quad 0 \leq l \leq n
$$

m_{i} Magnetic Quantum Number

$$
\begin{gathered}
m_{l}=-l,-l+1,-l+2, \ldots-1,0,1, \ldots l-1, l \\
-l \leq m_{l}<l
\end{gathered}
$$

a few: Ylem

$$
\begin{aligned}
& \mathrm{I}=0^{[1]} \text { [edit] } \\
& \quad Y_{0}^{0}(\theta, \varphi)=\frac{1}{2} \sqrt{\frac{1}{\pi}}
\end{aligned}
$$

I = $1^{[1]}$ [edit]

$$
\begin{aligned}
Y_{1}^{-1}(\theta, \varphi) & =\frac{1}{2} \sqrt{\frac{3}{2 \pi}} \cdot e^{-i \varphi} \cdot \sin \theta \\
Y_{1}^{0}(\theta, \varphi) & =\frac{1}{2} \sqrt{\frac{3}{2 \pi}} \cdot \frac{(x-i y)}{r} \\
Y_{1}^{1}(\theta, \varphi) & =\frac{1}{2} \sqrt{\frac{3}{\pi}} \cdot \cos \theta \\
& =\frac{1}{2} \sqrt{\frac{3}{\pi}} \cdot \frac{z}{r} \\
\frac{3}{2 \pi} \cdot e^{i \varphi} \cdot \sin \theta & =-\frac{1}{2} \sqrt{\frac{3}{2 \pi}} \cdot \frac{(x+i y)}{r}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\text { I = } 2^{[1]} \text { [edit] } & & \\
\begin{array}{rlrl}
Y_{2}^{-2}(\theta, \varphi) & =\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \cdot e^{-2 i \varphi} \cdot \sin ^{2} \theta & & =\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \cdot \frac{(x-i y)^{2}}{r^{2}} \\
Y_{2}^{-1}(\theta, \varphi) & =\frac{1}{2} \sqrt{\frac{15}{2 \pi}} \cdot e^{-i \varphi} \cdot \sin \theta \cdot \cos \theta & & =\frac{1}{2} \sqrt{\frac{15}{2 \pi}} \cdot \frac{(x-i y) z}{r^{2}} \\
Y_{2}^{0}(\theta, \varphi) & = & \frac{1}{4} \sqrt{\frac{5}{\pi}} \cdot\left(3 \cos ^{2} \theta-1\right) & \\
Y_{2}^{1}(\theta, \varphi) & =-\frac{1}{4} \sqrt{\frac{5}{\pi}} \cdot \frac{\left(2 z^{2}-x^{2}-y^{2}\right)}{r^{2}} \\
Y_{2}^{2}(\theta, \varphi) & = & \frac{1}{\frac{15}{2 \pi}} \cdot e^{i \varphi} \cdot \sin \theta \cdot \cos \theta & \\
\frac{1}{\frac{15}{2 \pi}} \cdot e^{2 i \varphi} \cdot \sin ^{2} \theta & & -\frac{1}{2} \sqrt{\frac{15}{2 \pi}} \cdot \frac{(x+i y) z}{r^{2}} \\
\end{array} & \frac{1}{4} \sqrt{\frac{15}{2 \pi}} \cdot \frac{(x+i y)^{2}}{r^{2}}
\end{array}
$$

$\mathrm{I}=\mathbf{3}^{[1]}$ [edit]
$Y_{3}^{-3}(\theta, \varphi)=\frac{1}{8} \sqrt{\frac{35}{\pi}} \cdot e^{-3 i \varphi} \cdot \sin ^{3} \theta=\frac{1}{8} \sqrt{\frac{35}{\pi}} \cdot \frac{(x-i y)^{3}}{r^{3}}$
$Y_{3}^{-2}(\theta, \varphi)=\frac{1}{4} \sqrt{\frac{105}{2 \pi}} \cdot e^{-2 i \varphi} \cdot \sin ^{2} \theta \cdot \cos \theta=\frac{1}{4} \sqrt{\frac{105}{2 \pi}} \cdot \frac{(x-i y)^{2} z}{r^{3}}$
$Y_{3}^{-1}(\theta, \varphi)=\frac{1}{8} \sqrt{\frac{21}{\pi}} \cdot e^{-i \varphi} \cdot \sin \theta \cdot\left(5 \cos ^{2} \theta-1\right)=\frac{1}{8} \sqrt{\frac{21}{\pi}} \cdot \frac{(x-i y)\left(4 z^{2}-x^{2}-y^{2}\right)}{r^{3}}$
$Y_{3}^{0}(\theta, \varphi)=\frac{1}{4} \sqrt{\frac{7}{\pi}} \cdot\left(5 \cos ^{3} \theta-3 \cos \theta\right) \quad=\frac{1}{4} \sqrt{\frac{7}{\pi}} \cdot \frac{z\left(2 z^{2}-3 x^{2}-3 y^{2}\right)}{r^{3}}$
$Y_{3}^{1}(\theta, \varphi)=-\frac{1}{8} \sqrt{\frac{21}{\pi}} \cdot e^{i \varphi} \cdot \sin \theta \cdot\left(5 \cos ^{2} \theta-1\right)=\frac{-1}{8} \sqrt{\frac{21}{\pi}} \cdot \frac{(x+i y)\left(4 z^{2}-x^{2}-y^{2}\right)}{r^{3}}$
$Y_{3}^{2}(\theta, \varphi)=\frac{1}{4} \sqrt{\frac{105}{2 \pi}} \cdot e^{2 i \varphi} \cdot \sin ^{2} \theta \cdot \cos \theta=\frac{1}{4} \sqrt{\frac{105}{2 \pi}} \cdot \frac{(x+i y)^{2} z}{r^{3}}$
$Y_{3}^{3}(\theta, \varphi)=-\frac{1}{8} \sqrt{\frac{35}{\pi}} \cdot e^{3 i \varphi} \cdot \sin ^{3} \theta=\frac{-1}{8} \sqrt{\frac{35}{\pi}} \cdot \frac{(x+i y)^{3}}{r^{3}}$
$I=4^{[1]}$ [edit]
$Y_{4}^{-4}(\theta, \varphi)=\frac{3}{16} \sqrt{\frac{35}{2 \pi}} \cdot e^{-4 i \varphi} \cdot \sin ^{4} \theta=\frac{3}{16} \sqrt{\frac{35}{2 \pi}} \cdot \frac{(x-i y)^{4}}{r^{4}}$
$Y_{4}^{-3}(\theta, \varphi)=\frac{3}{8} \sqrt{\frac{35}{\pi}} \cdot e^{-3 i \varphi} \cdot \sin ^{3} \theta \cdot \cos \theta=\frac{3}{8} \sqrt{\frac{35}{\pi}} \cdot \frac{(x-i y)^{3} z}{r^{4}}$
$Y_{4}^{-2}(\theta, \varphi)=\frac{3}{8} \sqrt{\frac{5}{2 \pi}} \cdot e^{-2 i \varphi} \cdot \sin ^{2} \theta \cdot\left(7 \cos ^{2} \theta-1\right)=\frac{3}{8} \sqrt{\frac{5}{2 \pi}} \cdot \frac{(x-i y)^{2} \cdot\left(7 z^{2}-r^{2}\right)}{r^{4}}$
$Y_{4}^{-1}(\theta, \varphi)=\frac{3}{8} \sqrt{\frac{5}{\pi}} \cdot e^{-i \varphi} \cdot \sin \theta \cdot\left(7 \cos ^{3} \theta-3 \cos \theta\right)=\frac{3}{8} \sqrt{\frac{5}{\pi}} \cdot \frac{(x-i y) \cdot z \cdot\left(7 z^{2}-3 r^{2}\right)}{r^{4}}$
$Y_{4}^{0}(\theta, \varphi)=\frac{3}{16} \sqrt{\frac{1}{\pi}} \cdot\left(35 \cos ^{4} \theta-30 \cos ^{2} \theta+3\right)=\frac{3}{16} \sqrt{\frac{1}{\pi}} \cdot \frac{\left(35 z^{4}-30 z^{2} r^{2}+3 r^{4}\right)}{r^{4}}$
$Y_{4}^{1}(\theta, \varphi)=\frac{-3}{8} \sqrt{\frac{5}{\pi}} \cdot e^{i \varphi} \cdot \sin \theta \cdot\left(7 \cos ^{3} \theta-3 \cos \theta\right)=\frac{-3}{8} \sqrt{\frac{5}{\pi}} \cdot \frac{(x+i y) \cdot z \cdot\left(7 z^{2}-3 r^{2}\right)}{r^{4}}$
$Y_{4}^{2}(\theta, \varphi)=\frac{3}{8} \sqrt{\frac{5}{2 \pi}} \cdot e^{2 i \varphi} \cdot \sin ^{2} \theta \cdot\left(7 \cos ^{2} \theta-1\right)=\frac{3}{8} \sqrt{\frac{5}{2 \pi}} \cdot \frac{(x+i y)^{2} \cdot\left(7 z^{2}-r^{2}\right)}{r^{4}}$
$Y_{4}^{3}(\theta, \varphi)=\frac{-3}{8} \sqrt{\frac{35}{\pi}} \cdot e^{3 i \varphi} \cdot \sin ^{3} \theta \cdot \cos \theta=\frac{-3}{8} \sqrt{\frac{35}{\pi}} \cdot \frac{(x+i y)^{3} z}{r^{4}}$
$Y_{4}^{4}(\theta, \varphi)=\frac{3}{16} \sqrt{\frac{35}{2 \pi}} \cdot e^{4 i \varphi} \cdot \sin ^{4} \theta=\frac{3}{16} \sqrt{\frac{35}{2 \pi}} \cdot \frac{(x+i y)^{4}}{r^{4}}$

$$
\begin{aligned}
l=2 \quad L & =\hbar \sqrt{l(l+1)} \\
L & =\hbar \sqrt{6}
\end{aligned}
$$

$$
\begin{aligned}
L_{z} & =m_{2} \hbar \\
& =0,1,-1,2,-2
\end{aligned}
$$

$$
m_{l}=-l,-l+1,-l+2, \cdots ;-1,0,1, \ldots l-1, l
$$

Noumalizatim:

$$
\begin{aligned}
& 1=\iiint_{\text {all space }}|R(r)|^{2}|Y(\theta, \phi)|^{2} r^{2} d r \sin \theta d \theta d \varphi \\
& 1=\int_{0}^{\infty}|R(r)|^{2} d v \int_{0}^{\pi} \int_{0}^{2 \pi}|Y(\theta, \varphi)|^{2} \sin \theta d \theta d \varphi
\end{aligned}
$$

can sort of visualize 2 different probability distributions:

$$
\begin{aligned}
& r^{2}|R(r)|^{2} d r \\
& \left|Y_{l}^{m}(\theta, \varphi)\right|^{2} \sin \theta d \theta d \varphi
\end{aligned}
$$

Most prokable? in mydrogen, $z=1$

$$
\begin{aligned}
& P_{10}=\frac{4}{a_{0}^{3}} r^{2} e^{-2 r / a_{0}} \\
& \frac{d P_{10}(r)}{d r}=\frac{4}{a_{0}^{3}}\left[2 r e^{-2 r / a_{0}}-r^{2}\left(\frac{2 r}{a_{0}}\right) e^{-2 r / a_{0}}\right]
\end{aligned}
$$

$=0$ for extremum

$$
=\frac{4}{a_{0}^{3}} e^{-2 v / a_{0}}\left[2 v-\frac{2 r^{2}}{a_{0}}\right]
$$

Average "place" fr electron?

$$
\langle r\rangle=\int_{0}^{\infty} r P_{10}(r) d r=\frac{4}{a_{0}^{3}} \int_{0}^{\infty} r^{3} e^{-2 r / a_{0}} d r
$$

ene $\int z^{n} e^{-z} d z=n!$
change varichles: $z=z / a_{0}$

$$
\begin{array}{lll}
\langle v\rangle=\frac{a_{0}}{4}(3!) P_{10} & 0.6 \\
\langle v\rangle=\frac{3}{2} a_{0} & 0.3
\end{array} \underbrace{4}_{2} \text { most probable }
$$

WHERE IS THE ELECTRON?

Average "place" fr electron?

$$
\langle r\rangle=\int_{0}^{\infty} r P_{10}(r) d r=\frac{4}{a_{0}^{3}} \int_{0}^{\infty} r^{3} e^{-2 r / a_{0}} d r
$$

ene $\int z^{n} e^{-z} d z=n!$
change variables: $z=2 r / a_{0}$

$$
\begin{array}{lll}
\langle v\rangle=\frac{a_{0}}{4}(3!) P_{10} & 0.6 \\
\langle v\rangle=\frac{3}{2} a_{0} & 0.3
\end{array} \underbrace{4}_{2} \text { most probable }
$$

WHERE IS THE ELECTRON?

Prohahility of electron outside the list Bohr outhit?
assume: is

$$
\begin{aligned}
P\left(r>a_{0}\right) & =\int_{a_{0}}^{\infty} P_{10}(r) d r \\
& =\frac{4}{a_{0}^{3}} \int_{a_{0}}^{\infty} r^{2} e^{-2 r / a_{0}} d r \\
& =\frac{1}{2} \int_{2}^{\infty} x^{2} e^{-x} d x \\
P\left(r>a_{0}\right) & =5 e^{-2} \sim 0.6 \varepsilon
\end{aligned}
$$

$\Rightarrow 2 / 3$ of the tine!
How shout clemly outside of its atom?

$$
\begin{gathered}
>r=100 a_{0} \\
P\left(r>100 a_{0}\right)=10^{-83} \neq 0
\end{gathered}
$$

How chout 2 s state...

$$
Y_{2}^{0} \rightarrow \text { sunuretiil. }
$$

$$
R_{20}=\frac{1}{\sqrt{\left(2 a_{0}\right)^{3}}}\left(2-\frac{r}{a_{0}}\right) e
$$

$$
-r / 2 a_{0}
$$

dennity peaks

Is electrous spend a sigmificant time in is land

Enevay dercuiss on n alone: $E_{n}=\frac{e^{4}}{\left(4 \pi \epsilon_{0}\right)^{2}} \frac{\mu}{\hbar^{2}} 2 n^{2}$
But each n can have many $l_{\text {'s }}^{1} m_{l}$'s substantial degeneracy.

Orbital angular momentum quantum number l
\#states

$$
\begin{aligned}
& 1+3+5+7=16 \\
& 1+3+5=9 \\
& 1+3=4
\end{aligned}
$$

$$
1
$$

$$
\text { \# degeneracies }=n^{2} \text { for } H
$$

TRANSITIONS ... the almost veal way

\rightarrow for a transitim, the प must "Overlap" in the "presence" of an electric dipole operator.

$$
\langle p\rangle=\iiint \psi_{A}^{*}(r, \theta, \varphi) q \hat{r} \psi_{B}(r, \theta, 6) r^{2} d v \sin \theta d \theta d \phi
$$

If integrals are zero \Rightarrow no transition from $B \rightarrow A$ non-zero \Rightarrow transitions from $B \rightarrow A$ can happen E. calculation yields prob \& rate (intensities)

$$
\langle p\rangle=\int r^{2} R(r)_{A}^{*} R(r)_{B} d r \iint Y_{e_{A}}^{m_{R_{A}}}(\theta, \phi)^{*} Y_{l_{B}}^{m_{l}}(\theta, \varphi) \sin \theta d \theta d \phi
$$

complicated.. but always non-zers
coutrd the "allowed" and "forbidden" transitions
\downarrow Which become
particular Δl 's
always ${ }^{\circ} \quad \Delta l= \pm 1$
so: $P \rightarrow s ?$ sure
$s \rightarrow s, p \rightarrow p \ldots$? nope
"selection Rules"
t mit quite

Orbiting electric changes \longrightarrow a maqnetic monent. Classical E $\frac{1}{2} M$: current loop
 maguetic momant $|\mu|=I A \quad$ (R.H.vule)

If an electsir chaige going in a circle $I=\frac{d Q}{d t}=\frac{Q}{T}$

So

$$
\begin{aligned}
& L=m v r+v=\frac{2 \pi r}{T}+A=\pi r^{2} \\
& L=m\left(\frac{2 \pi r}{T}\right)^{2}=2 m \frac{\pi r^{2}}{T}=2 m \frac{A}{T} \\
& \mu=I A=\frac{Q}{T} A=Q \frac{L}{2 m} \quad o v \quad \vec{\mu}=\frac{Q}{2 m} \vec{L} \\
& \overrightarrow{\mu_{e}}=-\frac{e}{2 m} \vec{L}
\end{aligned}
$$

Strange superposition of classical \& quantum mechanical notions: We found:

$$
L=\hbar \sqrt{\ell(l+1)}
$$

a vector w/ quantized projectim onto L_{z} axis $\rightarrow L_{z}=m_{2} \hbar$
we hove no prefored direction... I coned be anywhere
sowething must pitch a particular direction ail break that symmetry $\frac{1}{4}$ define the "axis of quantization"

Maquetic fields do that.

\vec{B} field \rightarrow defines the z axis So, an axis of quantization
all of hose moments align according, to \vec{L}

$$
\mu_{z}=\frac{-e}{2 m} L_{z}=-\frac{e \hbar}{2 m} m_{l}
$$

$\mu_{3}=-\frac{e}{2 m} \hbar m_{l}$ defines Bohv Magreton $\mu_{B} \equiv \frac{e \hbar}{2 m}=9.3 \times 10^{-24} \mathrm{~J} / \mathrm{T}$
$\mu_{z}=-\mu_{B} m_{l} \Rightarrow$ atonic waqrectic mowacts can be Thorght of as multiple, of μ_{B}.

Remewber: $\quad \vec{\tau}=\vec{\mu} \times \vec{B} \quad \rightarrow$ sechs to aligu $\vec{\mu}$ and \vec{B}

$$
\vec{\tau}=\frac{d \vec{L}}{d t}=\frac{Q}{2 m} \vec{L} \times \vec{B}
$$

de perpendicular to plave of $\vec{B} \rightleftarrows \vec{L}$

$$
\begin{aligned}
|d L| & =L \sin \theta d \phi \\
d \phi & =\frac{|d L|}{L \sin \theta} \\
\frac{|d L|}{d t} & =\tau \\
d \phi & =\frac{|\tau| d t}{L \sin \theta} \\
d \phi & =\frac{Q / 2 m(L B \sin \theta)}{L \sin \theta}
\end{aligned}
$$

$$
\begin{aligned}
d \phi=\frac{B Q}{2 m} d t \quad \Rightarrow & \text { precession@ ampuian } \\
& \text { frequancy: }
\end{aligned}
$$ frequancy:

$$
\omega_{L}=\frac{d \phi}{d t}=\frac{Q B}{2 m}
$$

Larmor Frequency

Got a traque? through an angle?
\rightarrow you got work dove

$$
\begin{aligned}
& d w=\tau d \theta \\
& d w=-\mu B \sin \theta d \theta \\
& d w=d(\vec{\mu} \cdot \vec{B})
\end{aligned} \quad(\text { ornoses } B)
$$

Wry stored as potential enerqu: $\quad d W=-d V$
an induced waquetic potentialenerqy $\quad V=-\vec{\mu} \cdot \vec{B}$
depends on:

$$
\cdot \vec{B}
$$

- the more aligned, the less is V

$$
\text { BUT... } \mu \text { is quantized according to } L_{z} \quad \mu_{z}=-\mu_{B} m_{l}
$$

$l=1$, for example:

from $V=-\vec{\mu} \cdot \vec{B}$
\checkmark is indeed quantized

The magnetic Ald defines a particular direction in space
\rightarrow the quantization axis, along $\vec{B} \ldots \hat{z}$

$$
\begin{aligned}
& V=\frac{e}{2 m} \vec{L} \cdot \vec{B}=\frac{e|B| L_{z}}{2 m} \\
& V=\mu_{B} m_{l} B \quad m_{l} \text { ranges over }-l \rightarrow+l
\end{aligned}
$$

Bottom line:
aprrm a magnetic field \rightarrow energy levels chouqe deqeneram liftel
Loventz, predikied, Zeeman discovered \rightarrow befre Q.M.
spectra:
1
\square

$$
B=0
$$

$$
B \neq 0
$$

selection rule

$$
\Delta m_{l}=0_{1} \pm 1
$$

$$
l=0 \quad l=1
$$

$$
l=0 \quad l=1
$$

"normal" ZEEMAN EFFECT
$1 \rightarrow 3$ splitting .. "norma" because classical picture predicts rough behavior
"ANOMALOUS" LEMAN EFFECT

$$
\left.\begin{array}{l}
1 \rightarrow 4 \\
1 \rightarrow 6
\end{array}\right\} \text { experimentally confusing, classically, disturbing }
$$

"Stern-Gerlach Experiment"

$$
\longrightarrow \text { slides! }
$$

Remember a current loop: where's the B field?

Spin"

sometimes we use "normal language"

to refer to a physical property without a common-sense analog
and sometimes, just to be silly

called a
"magnetic dipole"

Like a bar magnet, with the north pole up...

Remember that Oersted found that a compass needle followed the B field, so this setup would also
external B field

A current loop's magnetism can be characterized

lipole moment

 characterizes the magnetism of a current loop
μ is called the
"magnetic dipole moment"
more current, higher the moment - the μ the more torque

3ohr was not the whole story

 but his quantization condition was mostly correctOrbital angular momentum - the s, p, d, f, g, h, etc originates with Schroedinger's evolution of Bohr's original idea:

But, the electron's orbit is a little current

So, atomic orbits should twist

 measure in 1922...
emember pectroscopic notation from Chemistry?

he Bohr Model

 oredicted a bunch of pots
since Silver is a

 complicated atom:$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10}$ $4 s^{2} 4 p^{6} 4 d^{10} 5 s^{1}$

If Bohr was right

Separation into 2 spots evidence of "quantization" of some sort... why 2 ?

Separation into 2 locations, which made no sense.

Something is "quantized"

The electron is like a spinning charge...

In what you're supposed 0 do

young Dutch experimenters George Uhlenbeck* and Sam Goudsmit had an idea
told by their advisor "don't publish"
they did.

Like for orbital angular momentum,

$$
L_{z}=m_{\ell} \frac{h}{2 \pi}
$$

Electrons have an intrinsic angular momentum

$$
S_{z}=m_{s} \frac{h}{2 \pi}
$$

But, the "spin" can only take on two values:

$$
m_{s}=+\frac{1}{2} \quad \text { or } \quad m_{s}=-\frac{1}{2}
$$

We say
"spin, plus $1 / 2$ " or "spin up" and
"spin, minus $1 / 2$ " or "spin down"

Stern \& Gerlach got a hodqe-podpe of resuets
Oxyeur 5 spots $2 s^{2} 2 p^{4}$
Silver 2 spots ... 5s
Tuternreted as on angular-mowentum-like sedetimr vule w/ "l" l " $1 / 2$
Youre not much if youre not Dutch...
Gordsmit \& Vhlenbech propred
electurn has an inherent proberty: "spin"
$S=1 / 2$ with projections like $L:|S|=\hbar \sqrt{S(S+1)}$

$$
=\hbar \sqrt{1 / 2 \cdot 3 / 2}
$$

$$
|s|=\frac{\sqrt{3}}{2} n
$$

$$
s_{3}= \pm 1 / 2 \hbar=m_{s} \hbar
$$

Spin
has features like angular momentum .- waquetic - like
no circular currents!
NO CHARGES GOING AROUND ANYTHING! NOT A ball of change rotating!

SPIN IS INHERENT TO ELECTRONS

lousy name!
nothing is "spinning"

DEFINE AN ELECTRON:

- An excitatim of the electron field
- having mas $=0.5 \mathrm{~h} \mathrm{Mev} / \mathrm{c}^{2}$
- having electric charge $=-1.6 \times 10^{-19} \mathrm{C}$
- having intrinsic spin $=1 / 2$

Magnetic Moment

$$
\vec{\mu}_{s}=-g_{e} \frac{e}{2 m_{e}} \vec{s}
$$

a fudge fact rr.. measurable: gyromagnetic ratio (stay tuned)
No reason or "implementation" of spin in Quantum Mechanics

Until 1928: Paul Dirac \rightarrow fist relativistic quantum mechanics The Dirac Equation designed to deal with negative E

- 4 wave functions resulted

$$
\operatorname{spin} \text { taus }\left\{\begin{array}{l}
(2) \text { with + energies } \longrightarrow \text { electron } \\
\text { out from } \\
\text { mathematics }
\end{array} \text { with - energies } \longrightarrow\right. \text { anti-electron }
$$

Spin is an inherently Relativistic property of elea drous...
... and neutrons, protons \rightarrow au "fermions"
Also a quantum mechanics of integer-spin excitations \rightarrow all "bosons"
$S=0$ pions, kaons, tiįqs boson
$S=1$
piston, rho meson, w, z \qquad
that's why $\Delta l= \pm 1$
Angular mowentum is conserved .. γ radiates away and takes angular momentum of \hbar from system So , Δl is reduced.

About g.

We have 2 moments uss:
Orbital avevear mowautum: $\quad \vec{\mu}_{l}=-\frac{\mu_{B}}{\hbar} \vec{L} \quad\left(=-\frac{g_{l} \mu_{B} \vec{L}}{\hbar}\right)$
Spin" intrinsic" angular momentum: $\quad \vec{\mu}_{S}=-\frac{2 \mu_{B}}{\bar{\hbar}} \vec{s}\left(=-g_{S} \frac{\mu_{B}}{\hbar} \vec{s}\right)$
g_{s} is strictly a relativistic quantity.

$$
g_{s}=2
$$

g_{k} is sometimes included.

$$
g_{l}=1
$$

MORE g.

Relativistic Quantum Field Theory

since α small, each additional "vertex" is swavler than prederessn.

Fill treat main of electrons requires

$$
+
$$

$+$

+ counhinations $\stackrel{+}{4}$ aclditimel
 etc.

Contributions add up and modify static properties of the electron

$$
\begin{aligned}
& \vec{\mu}_{s}(e)= g_{e} \frac{e}{} \vec{s} \\
&\left(\begin{array}{l}
2 m_{e} c
\end{array}\right. \\
& \text { net effect } s \text { to versify } \delta_{e}=2
\end{aligned}
$$

" $g-2^{" . . . " q e e ~ m i m u s ~ t w o " . . . ~ a ~ v a c e ~ f o n ~ p r e c i s i o n ~}$ between the my (-10^{3} individual Feynman diagrams) ave experiment (heroic Penning Trap experiments)

Conventionally, whit's reported is

$$
a_{e} \equiv \frac{g-2}{2}
$$

experiment: $\quad a_{e}^{\text {ExP }}=11596521807.3(2.8) \times 10^{-13}$

$$
\begin{aligned}
= & 0.00115965218073 \\
& \pm 0.00000000000028
\end{aligned}
$$

theory

$$
\begin{array}{rlrl}
a_{e}^{S M}= & 0,00115965218178 & \\
& \pm 0.00000000000006 & (4 \text { loop wucertaintics }) \\
& \pm 0.00000000000004 & (5 \text { loup uncertainties }) \\
& \pm 0.00000000000002 & \delta a_{e}^{1 A D} \\
& \pm 0.00000000000076 & \delta a_{e}^{R b}(\alpha) \\
a_{e}^{E \times R}-a_{e}^{\text {Sn }} & =-10.5(8.1) \times 10^{-13} & 1.1 \sigma \text { difference }
\end{array}
$$

The most precise enunciation about nature in the history of...eventhing

