

14. Particle Physics, 2

lecture last, December 8, 2017 pitchers and catchers report in 70 days

housekeeping

Exam 3: average 35, incl. extra
Chapter 14, Particle Physics
mostly entertainment, some serious moments
read the chapter!
Final: Monday, December 11, 3:00-5:00 pm, 101
Biochemistry Building
two 5"x8" index cards

I predict problems and questions could come from Chapters:

- 2. Relativity
- 3. Experimental Basis for Quantum Theory
- 4. Structure of the Atom
- 5. Wave Properties of Matter
- 6. Quantum Mechanics
- 7. Hydrogen Atom
- 12. Atomic Nucleus
- 13. Nuclear Reactions
- 14. Particle Physics, but qualitative
- Thermodynamics

I might ask you to summarize some famous experiments and the accomplishments of possibly some of these people:

Lorentz, Einstein, Michelson and Morley, Joule, Carnot, Boltzmann, Roentgen, JJ Thompson, Millikan, Planck, Compton, Rutherford, Bohr, Moseley, Bragg, De Broglie, Heisenberg, Schrodinger, Zeeman, Chadwick, Marie Curie, Yukawa, Fermi, Pauli

Name:

Student

PHY215, fall 2017
Physics and Thermodynamics

Final Exam. Monday, December 11, 2017: 80 points 3:00pm - 5:00pm in 101 Biochemistry

Please show all of your work. If you need more space, use the back and indicate clearly what problem is being continued. If you still need more space...ask
for another sheet and cleanly indude your name and what problem is begin for anothe
continued

$$
\begin{aligned}
& \text { Formulae and Integrals } \\
& \text { reduced mass: } \mu=\frac{m M}{m+M} \\
& \begin{aligned}
\text { mean velocity for an ideal gas: }\langle v\rangle=\frac{4}{\sqrt{2 \pi}} \sqrt{\frac{k T}{m}}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \int \cos x d x=\sin \\
& \int \sin ^{2} x d x=\frac{1}{2} x-\frac{1}{2} \sin 2 x \\
& \int x \sin ^{2} x d x=\frac{x^{2}}{4}-\frac{x \sin 2 x}{4}-\frac{\cos 2 x}{8} \\
& \int x^{2} \sin ^{2} x d x=\frac{x^{3}}{6}-\left(\frac{x^{2}}{4}-\frac{1}{8}\right) \sin 2 x-\frac{x \cos 2 x}{4} \\
& \int e^{-a x d x}=-\frac{1}{a} e^{-a x} \\
& \begin{array}{l}
\Delta Q=m c \Delta T \\
\Delta Q=\Delta W+\Delta U
\end{array} \\
& \text { deal Gas Lav: } P V=n R T \\
& \text { Work done: } \Delta W=\int P d V \\
& \text { Molar Speciic Heats: } C_{V}=\Delta U / n \Delta I \\
& \begin{array}{l}
C_{P}=\Delta Q / n \Delta T \\
C_{P}=C_{V}+R
\end{array} \\
& \text { For adiebatic transformations: } \Delta Q=0 \text {; and } P V^{\gamma}=\text { constant } \\
& \text { Thermodynamic efficiency: } \epsilon=\frac{W}{Q_{i n}} \\
& \begin{aligned}
\text { Wave motion: } v=f \lambda \\
\text { elativisic "beta": } \beta=v /
\end{aligned} \\
& \begin{aligned}
\gamma & =\frac{1}{\sqrt{1-\beta^{2}}}
\end{aligned} \\
& \begin{aligned}
\text { Length contraction: } L^{\prime} & =L^{\prime} \\
\text { Time Dilation: } T^{\prime} & =\gamma I
\end{aligned} \\
& \text { Relativistic addition of velocities: } v^{\prime}=\frac{v+u}{1+v u / c^{2}} \\
& \begin{array}{l}
E^{2}=p^{2} c^{2}+m^{2} c^{2} \\
E=\gamma m c^{2}
\end{array} \\
& \begin{array}{l}
E=\gamma m c^{2} \\
p=\gamma m v \\
K=E-m c
\end{array} \\
& \begin{array}{c}
p=\gamma m v \\
K_{3}=E-m c^{2}
\end{array}
\end{aligned}
$$

Constants

1 calarie $=4.186 \mathrm{~J}$
1 tamosphere $=1.01$
 Solzman's Constant: $k=1.38 \times 10-10.6=8.617 \times 1$
Sefan-Botzmann's constant: $\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$

atomic mass unit: $u=1.66054 \times 10-1027 \mathrm{kC}=931.494043 \mathrm{MeV} / \mathrm{c}^{2}$

Lass of the proton: $m_{n}=1.007277 u \quad 4 \mathrm{~kg}=938.3 \mathrm{MeV} / \mathrm{C}$
 Mass of the neutron: $m_{n}=1.008665 u$
Mess of the alphan particle: $m_{\alpha}=3727.4 \mathrm{MeV} / \mathrm{c}^{2}$

...times $e^{2}: \frac{e^{2}}{4 \pi \epsilon_{0}}=2.3071 \times 10^{-28} \mathrm{~J}-\mathrm{m}=1.4400 \times 10^{-9} \mathrm{eV}-\mathrm{m}$ Bohr radiuss $a_{0}=\frac{\hbar}{m_{e} c \alpha}=0.5292 \times 10^{-10} \mathrm{~m}$
Fine structure constant: $\alpha=\frac{e^{2}}{4 \pi \epsilon \rho \text { 价 }}=1 / 137.036$ Radioactive activity: 1 Curie $=1 \mathrm{C}=3.7 \times 10^{10}$ decayj $/ \mathrm{s}$ Radioactive activity: $1 \mathrm{~Bq}=1$ decay
$\begin{aligned} \text { Planck energy relation: } E & =h f \\ \text { Einstein's photoelectric relation: } h f & =K+\phi\end{aligned}$
Compton formula: $\Delta \lambda=\lambda^{\prime}-\lambda=(1-\cos \theta) h / m_{c} c$
Bohr Atom Energy: $E_{n}=-\frac{c^{2}}{8 \pi e_{n}}=-\frac{E_{0}}{n^{2}}$
Bohr Atom Redius: $r_{n}=\frac{4 \pi \epsilon \hbar^{2}}{m e^{2}} n^{2}$
$\begin{aligned} \text { For H: } E_{0} & =13.6 \mathrm{eV} \\ c_{0} & =5.29 \times 10^{-11} \mathrm{~m}\end{aligned}$
Reduced mass: $\mu=\frac{m M}{m+M}$
Rutherford Scattering: $N(\theta)=\frac{N_{\text {site }}^{4} Z^{2} Z_{2}^{2} Z_{2}^{2}}{16(4 \pi)^{2} r^{2} K^{2} \sin ^{4}(\theta / 2)}$
De Brogie wavelength: $\lambda=h / p$
ncertainty reations: $\Delta p_{x} \Delta x \geq \hbar / 2 ; \Delta E \Delta t \geq \hbar / 2$

Probability density: $=\psi^{*} \psi$
Normalization condition: $\int \psi^{*} \psi d x=$
Infinite Square Well in 1 dimension: $\psi=\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L}$
Infinite Square Well in 1 dimension: $E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2}$
Infinite Square Well in 3 dimensions: $E_{n}=\frac{2 m L^{2}}{\frac{\pi}{2}^{2} h^{2}} 2\left(\frac{n_{1}^{2}}{L_{1}^{2}} \frac{n_{2}^{2}}{L_{2}^{2}}+\frac{n_{3}^{2}}{L_{3}^{2}}\right)$
Simple Harmonic Osciliator: $V=1 / 2 k x^{2} ; \omega^{2}=k / m ; E_{n}=(n+1 / 2) \hbar$
$\begin{aligned} \text { Radioactive Decay: } N & =N_{0} e^{-\lambda t} \\ \text { Activity: } R & =R_{0} e^{-\lambda t}\end{aligned}$
Halfifie: $T_{1 / 2}=\ln (2) / \lambda, \ln (2)=0.693$
$\begin{aligned} \text { Haffilife: } T_{1 / 2} & =\ln (2) / \lambda, \ln (2)=0.69 \\ \text { Activity: } R & =\lambda N\end{aligned}$

plus

review me

today

particle physics

particle physics
aha High Energy Physics
higher energies \rightarrow probing smaller distances \& creating new quanta.
nuclear physics
 n er enarvies ~ $1950^{\circ} \mathrm{s}$
wove complexity \rightarrow rave isotopes commeiceted higher states high densities of under

Both fields depend on accelevatis and storage rings.
But - the emily, defining discovaies were in cosmic rays

We left off with the fourwing cast: ~ 1933
electrons
$\left.\begin{array}{l}\text { photous } \\ \text { protous }\end{array}\right\}$ each a discovery, then a probe neutrons
neatninos 1931
pious (actrally 1935)
positron 1928
electrowequetic fuce: e, p, γ, e^{+}
stroug fnce: D, n, π
weah force: Pin,e,v
Then, it got sivange .. following Divae in 1928.

Paul Dirac

- showed Schodinquis \&i Heiserbevqंs QM were the same
- developed velativistil QM.
- invented quantum field theol.

Dirac Equation
remaulia $Q M$ operators

$$
\begin{array}{lr}
P_{x} \rightarrow & -i \hbar \frac{\partial}{\partial x} \\
E \rightarrow & i \hbar \frac{\partial}{\partial t}
\end{array}
$$

So,

$$
E=\frac{p^{2}}{2 m}+v \rightarrow i \hbar \frac{\partial}{\partial t} \psi=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+v \psi
$$

But relativity: $\quad E^{2}=p^{2} c^{2}+m^{2} c^{4}$

$$
E=\sqrt{p^{2} c^{2}+m^{2} c^{4}} \quad \longrightarrow \text { mn ? }
$$

negative E negative $\psi^{*} \psi$
S.E. is 2 -valued $\frac{z_{1}}{1}$ aud order \bar{n} space fermis.
following Pauli, we write $\quad \psi=\binom{\psi_{\uparrow}}{\psi_{\downarrow}}$ a matrix in "spin space"
a genacl solution might invcbe a v with operators only ir spin spare... lithe a magnetic field

$$
S \psi \xrightarrow{\text { might }}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \psi=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\binom{\psi_{\uparrow}}{\psi_{\downarrow}}=\binom{\psi_{\hat{\imath}}}{0}
$$

all built into S.E.... a cludge... very ad hor.

1928
Dirac found he could get avound the regative probstrility puoblem with $a 1^{s t}$-order differentid equation $\frac{\partial}{\partial t} \xi \frac{\partial}{\partial x} \frac{\partial}{\partial y} \frac{\partial}{\partial z}$ ouly at a price:

$$
\left.\psi=\left\{\begin{array}{l}
\psi_{\uparrow}^{+} \\
\psi_{\downarrow}^{+} \\
\psi_{\uparrow}^{-} \\
\psi_{\downarrow}^{-}
\end{array}\right)\right\} \text {+energy electrons } \hat{\imath} \leqslant \downarrow
$$

a 4-componaut "spinov"
a briger Dircc-space which contains spin-space àside
What was x ?
He guessed "protom" Oppewheiner shoned $m_{x}=m_{e}$, not proton an anti-electron
Dirac's idea of how e^{\prime} 's niteracts ω / γ^{\prime} 's chauged changed ow ideas abrout the vacuum $\&$ patide interactions
(A) $\xrightarrow{\text { more }}$

here's a number:

0

0

zero

the \# of successfully combined models of

Quantum Mechanics and Relativity

$$
\text { prior to } 1928
$$

$\uparrow E$

negative energies for unbound systems a disaster

negative energies for unbound systems a disaster

negative energies for unbound systems a disaster

1928

Paul Dirac

$$
1902-1984
$$

At the question period after a Dirac lecture at the University of Toronto, somebody in the audience remarked: "Professor Dirac, I do not understand how you derived the formula on the top left side of the blackboard.
"This is not a question," snapped Dirac, "it is a statement."
hilarious interview with the
Wisconsin State Journal from 1929
on the blog.
still negative energies?
"solved" it with Pauli's Exclusion Principle

start

with

nothing

NOTHING

+ Energy

$$
E_{\gamma}>2 m_{e} c^{2}
$$

Let's talk about

 Nothing.Dirac began this discussion
which continues today
in particle physics
and in cosmology

what is this?

$$
\psi(-\mathrm{E}) \text { a positively charged object with negative energy? }
$$

At first, he thought: "proton"
nah. A bolder idea: an anti-electron. The Positron.

modern

 intepretat
positive
energy

The antimatter story has a

happy ending:

1932

Cosmic Rays very high energy protons from space

~2 per minute per fingernail

Carl

Anderson

sharper curvature at top
look at this track...
clever...put in a lead plate to cause particles to lose energy

DOWN and negative?
UP and positive?
B field in
Right on
schedule: 1932

B field in

anti-electron, aka "positron"

symbol:
charge:
mass:
spin:
category:
\bar{e} or e^{+}
$+1 e$

$$
m_{e}=9.0 \times 10^{-31} \mathrm{~kg} \sim 0.0005 \mathrm{p}
$$

$$
1 / 2
$$

anti-fermion, anti-lepton

antimatter

is a fact of life
every particle has it's anti-particle partner same mass, different electrical charge

Dirac

Nobel

at the age of 31

Nobelprize.org

Home / Nobel Prizes / Nobel Price in Physiss / The Nobel Prize in Physics 1933

About the Nobel Prizes

Facts and Lists
Nobel Prize in Physics All Nobel Prizes in Physics Facts on the Nobel Prize in Physics
Prize Awarder for the Nobel Prize in Physics
Nomination and Selection of Physics Laureates Nobel Medal for Physics Articles in Physics Video Interviews Video Nobel Lectures Nobel Prize in Chemistry Nobel Prize in Physiology or Medicine

Nobel Prize in Literature
Nobel Peace Prize
Prize in Economic Sciences
Nobel Laureates Have Their Say
Nobel Prize Award Ceremonies
Nomination and Selection of
Nobel Laureates

$$
\begin{aligned}
& \text { Erwin Schrōdinge } \\
& \text { Paul A.M. Dirac }
\end{aligned}
$$

The Nobel Prize in Physics 1933 was awarded jointly to Erwin Schrödinger and Paul Adrien Maurice Dirac "for the discovery of new productive forms of atomic theory"

Photos: Copyright © The Nobel Foundation
. 14 Ma 2013
$\mathrm{http} / / \mathrm{mww}$. .nobelprize.org/nobel prizes/hhysics/laureates/1933

Carl

Anderson

and Victor

Hess

Anderson was 31

Nobelprize.org

The Official Web Site of the Nobel Prize

Home / Nobel Prizes / Nobel Prize in Physics / The Nobel Prize in Physics 1936

About the Nobel Prizes

Facts and Lists

Dobel Prize in Physics All Nobel Prizes in Physics
Facts on the Nobel Prize in Physics
Prize Awarder for the Nobel Prize in Physics
Nomination and Selection of
Physics Laureates Nobel Medal for Physics
Articles in Physics
Video Interviews
Video Nobel Lectures
Nobel Prize in Chemistry
Nobel Prize in Physiology or Medicine
Nobel Prize in Literature
Nobel Peace Prize
Prize in Economic Sciences
Nobel Laureates Have Their Say
Nobel Prize Award Ceremonies
Nomination and Selection of

The Nobel Prize in Physics 1936 Victor F. Hess, Carl D. Anderson

The Nobel Prize in Physics 1936 *
Victor F. Hess
Carl D. Anderson

The Nobel Prize in Physics 1936 was divided equally between Victor Franz Hess "for his discang~of cosmic radiation" and Carl David Anderson "for his discovery

Victor Franz Hess

Carl David Anderson
this is where it gets interesting we need to establish a language for Dirac-like reactions
"Relativistic Quantum Field Theory" essentially invented by Paul Dirac
notice a couple of things about what appears in Dirac's equation

1. it's about more than one thing: two electrons and a photon
"regular" Quantum Mechanics is about single objects only
2. stuff appears and stuff disappears
(B)

$$
\begin{aligned}
& \psi^{+} \sim e^{-i E t} \quad \text { moving forward in time } \\
& \psi^{-} \alpha e^{-i(-E) t} \quad \xrightarrow{\text { sorta }} \propto e^{-i(E)(-t)}
\end{aligned}
$$

Feynman's Interpretation
\uparrow time
 but how?

(

relativistic quantum field theory

no charge

here's how

stuff happens
in this particle field theory model

 $0_{0} \quad 0_{0} \quad 0_{0} \quad 0_{0} 0_{0} 0_{0} 0_{0}$

2	9	0	- \uparrow	- $¢$	-2	2	-9	0	-¢	Q	2	9	- $¢$	9	0	Q	-9	-9	-2	-2	-9	0	-9	(1)	-2	- \uparrow
2	-9	Q	-2	-2	-9	9	2	2	-9	- 9	- 9	0	2	-9	Q	2	(1)	-2	0	0	-2	0	9	2	2	2
0	- 9	2	2	-9	Q	-9	-9	- 9	-2	0	- 9	-2	-2	-9	2	-2	(1)	(1)	0	2	-9	(1)	Q	2	0	- 9
Q	-2	2	©	Q	Q	0	(1)	- 9	-9	2	0	0	-2	2	0	2	2	-9	Q	-2	2	2	0	2	2	- 9
0	-2	Q	-2	-2	0	(1)	0	0	0	- ${ }^{\text {- }}$	- ${ }^{-1}$	0	2	-2	0	-2	-4	-2	0	2	2	0	0	(1)	-9	2
0	(9)	Q	-2	-2	-2	0	-2	0	Q	-2	0	(1)	2	-9	2	-2	2	0	2	Q	2	-2	(1)	-9	-9	©
-2	-2	-2	©	Q	Q	- 9	- 9	(1)	2	- ${ }^{\text {- }}$	Q	9	-2	- 9	-2	(1)	0	(1)	2	-9	0	-2	2	2	Q	0
0	-2	-2	2	-9	2	0	(1)	-9	0	0	-2	-2	0	0	0	-2	-2	- 9	(1)	0	(1)	-2	-2	Q	-2	- 9
-9	(1)	-4	(1)	0	-2	2	-2	2	-2	0	(1)	0	2	-2	-2	2	-2	-(1)	-(1)	- 9	0	2	0	-4	0	0
(1)	2	- ${ }^{\text {a }}$	-4	-2	-4	-4	-2	0	-2	©	©	2	(1)	-2	- 9	-4	(1)	-2	-2	-2	0	-2	2	-2	-9	2
(1)	-2	Q	(1)	Q	-2	2	-2	2	(1)	- ${ }^{\text {a }}$	2	(1)	-4	(1)	2	2	-2	-2	2	2	2	(1)	(1)	Q	-9	-2
0	0	- ${ }^{\text {a }}$	-2	2	2	-2	0	(1)	2	-2	- ${ }^{-1}$	-4	0	-2	(1)	0	0	(1)	2	(1)	-2	-9	2	-2	2	- 9
0	(1)	0	0	2	-2	0	-4	-1)	2	2	0	0	-(1)	(1)	-2	-2	0	0	0	(1)	-2	-2	-1	Q	Q	(1)
-9	2	0	2	-2	©	(1)	(1)	2	(1)	- ${ }^{-1}$	2	(1)	2	-2	2	2	(1)	(1)	2	-(1)	0	-2	-2	2	0	-2
0	2	©	-2	©	-2	(1)	-2	0	2	- ${ }^{(1)}$	-2	-2	-2	-2	(1)	-(1)	0	0	2	-(1)	(1)	-(1)	0	-2	2	0
0	(1)	0	0	2	0	2	2	0	-9	0	2	-2	2	2	0	-2	-2	2	(1)	2	-(1)	-2	0	0	0	(1)
0	2	0	2	©	-2	-2	-9	-2	-4	2	©	-2	(1)	(1)	©	2	0	-2	-(1)	2	(1)	-(1)	-2	-2	-2	(1)
0	-(1)	-2	-2	0	2	2	0	-(1)	(1)	-2	-2	(1)	-(1)	0	2	-(1)	-2	(1)	2	-2	2	0	0	2	0	0
(1)	(1)	-2	-1	-2	(1)	2	-2	-(1)	-2	0	- ${ }^{(1)}$	-2	-(1)	0	2	0	-2	(1)	-(1)	-(1)	0	-(1)	-2	-(1)	-(1)	0
0	-(1)	0	8	-(1)	0	-1	-8	-8	(1)	(1)	-8	(1)	-(1)	0	-1)	(1)	0	-(1)	-1	8	(1)	-(1)	-1	-2	-2	-(1)
-Q	-8	0	-8	0	(1)	0	-8	0	-4	2	-8	-2	-2	(1)	(1)	(1)	-(1)	(1)	0	-8	2	-(1)	0	-8	-2	0
-(1)	0	-2	0	0	-2	0	0	-(1)	-(1)	8	8	(1)	0	(1)	0	0	(1)	(1)	2	(1)	0	-(1)	-(1)	2	2	-8
-(1)	(1)	- 0	(1)	-(1)	8	(1)	(1)	(1)	-8	(1)	0	8	(1)	-2	-2	0	(1)	-(1)	-8	-2	2	(1)	(1)	-1)	-2	-(1)

0			0	0	0	0	0		0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0								Γ	0	$)^{0}$	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	7	7	0	0	0
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	7	7	7	6	0	0
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0		$0 \text { p }$			n^{0}	0	6	7	8			7	5	0
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0		0	0	0	0	0	6	7		10	9	7	6	0
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	8	9	8	7	0	0
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0		7	7	7	0	0	0
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0			0	0	0	0	0		0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0

electron
photon field "disturbance"

our atom

particle field theory* the best theory in history

never an incorrect prediction

outrageously precise agreement, prediction and measurement

what's more fundamental?

 a winnerfields

the particle vacuum full of fields:

the particle vacuum full of fields for every "particles"

two predictions for "space"

energy in the particle vacuum is
$30,000,0$ $00,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000$
times the energy in the dark energy vacuum
this has a name

"the worst prediction in the history of physics"

electron field
photon field

vacuum

every quantum has a field

the vacuum

 is acomplicated place

what the

 mathematics tells
US

it's not like the photon is now "in" the electron
the photon pops the electron- positron pair out of the Ur electron field and itself disappears back into the Ur photon field.

but what

we have to subtract the energy of the vacuum
does taway..because it's infinite and all we care about is the states we build above the vacuum energy

We weed to reanangy our enorgy scale aqain
gust a cittle.
it means that the vacuum is full of energy
like a reservoir
particles are created out of the vacuum

Uncertainty...

$$
\Delta x \Delta p \sim h
$$

interpret this as an eneary.

$$
\underset{\uparrow}{\operatorname{ax}} \underset{\sim}{q} \sim h c
$$

interpact thin is rest enagM $\Delta p c \sim$ "m"ec"

$$
\Delta x \sim \frac{h c}{" M m_{e}^{*} c^{2}}
$$

tre unseutainty in ehwern? nitevnret as a "wass"
but not actually TAE me

$$
\begin{aligned}
& \begin{array}{lllllllllllll}
0 & 0 & -2 & 0 & 0 & -2 & -1 & 0 & -1 & -1 & -1 & -1 & -2
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& -2
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllllllllllllllllllllllllllllllll}
-2 & -1 & 0 & -1 & -1 & 0 & -1 & -1 & 4 & 3 & 2 & 2 & 1 & -2 & 0 & -2 & -1 & 0 & 0 & -1 & 0 & -2 & -1 & -1 & -1 & 0 & 0 & -2 & 0 & -2 & -1 & -2 & 0
\end{array} \\
& \begin{array}{llllllllllllllllllllllllllllllllllllll}
-2 & 0 & -2 & -2 & 0 & 0 & -1 & 0 & 0 & 2 & 1 & 3 & 0 & -1 & -2 & -2 & -1 & -1 & -2 & 0 & -2 & -2 & -2 & 0 & -2 & -2 & 0 & -1 & -2 & 0 & -2 & -2 & -1
\end{array}
\end{aligned}
$$

Now, comiston scattering-- reweubrer?

$$
\gamma+e \rightarrow \gamma^{\prime}+e^{\prime}
$$

or

the most important thing in particle physics?
getting the name right.
the "Yukon"? thankfully, no.
the "meson?" Why yes, I think I like it.
medium mass...

not too big (proton) not too small (electron): just right.

the hunt was on

to find the Yukawa Particle

but WWII got in the way

Post-war emulsion exposures were startling

proton in cosmic rays

Nitrogen nucleus in cosmic rays

many of these sort:

 something unknown...20,000 stereo photos --> 1600 usable tracks in $3 \mathrm{~cm}^{2}$ plate

strange things in cosmic rays
thick photographic substrates

decay
two

discoveries

This took some unraveling.

The "meson" appeared in and initiated nuclear collisions

The unknown particle seemed to live about a $6 \mu \mathrm{sec}$ too long to be a meson

The winning proposal:
for the price of one

particle: pion
symbol:
charge:
mass:
spin:
category:
π
$+,-, 0$
$139 \mathrm{MeV} / \mathrm{c}^{2}$,
0
Boson, hadron, meson
three
forces now of vastly different strengths

Electromagnetic force 0.007

Weak force 0.000001

muon

symbol:
charge:
mass:
spin:
category:
+, -
105.7 MeV/c²

1/2
Fermion, lepton

The Thau is exactly like an

 Electron just more spin: cum...heavier.
BTW

there are as many neutrinos
as there are "electrons"
we got the original electron, we got an electron-neutrino
the muon, a muon neutrino
aaaand. another one: the tau and its neutrino
particle: muon-neutrino
symbol:
charge:
mass:
spin:
category:
ν_{μ}
0
0 or 0.4-ish to 1 -ish $\mathrm{eV} / \mathrm{c}^{2}$ 1/2

Fermion, lepton
particle: tau-neutrino
symbol:
charge:
mass:
spin:
category:
ν_{τ}
0
0 or 0.4-ish to 1-ish eV/c²
1/2
Fermion, lepton

the players

in our universe, circa June, 2012

	generation	1st	2nd	3rd	messenger particles
leptons	$q=0 e$	v_{e} neutrino	$\underset{\text { neutrino }}{\boldsymbol{V}_{\mu}}$	$\underset{\text { neutrino }}{\mathcal{V}_{\tau}}$	$\underset{\text { photon }}{\gamma}$
	$q=-1 e$	e electron	μ	τ	$\underset{\text { Wboson }}{W}$
quarks	$q=+2 / 3 e$		C electron	t electron	$\underset{\text { Z boson }}{Z}$
	$q=-1 / 3 e$	d electron	S electron	b electron	$\underset{\text { gluon }}{g}$

E

$$
\begin{aligned}
\vec{\nabla} \cdot \vec{E} & =\frac{\rho}{\epsilon_{0}} & & \text { Gauss's law } \\
\vec{\nabla} \times \vec{E} & =-\frac{\partial \vec{B}}{\partial t} & & \text { Ampere's law } \\
\vec{\nabla} \cdot \vec{B} & =0 & & \\
\vec{\nabla} \times \vec{B} & =\mu_{0} \vec{j}+\frac{\partial \vec{E}}{\partial t} & & \text { Faraday's law }
\end{aligned}
$$

$$
\vec{B}=\vec{\nabla} \times \vec{A} \quad \text { and } \quad \vec{E}=-\vec{\nabla} \phi-\frac{\partial \vec{A}}{\partial t}
$$

"Vector potential"
\longrightarrow aqe-old way to add electromagnetism to classical Newtonian wehanius aud N.R.Q.M. \& R.Q.M.
"minimum coupling rule"

$$
p^{2} \text { lime in } \frac{p^{2}}{2 m} \longrightarrow(p-i e \vec{A})^{2}
$$

a rule
so in $1 d \quad\left(p_{x}-i e A_{x}\right)^{2}$

Gauge Principle

all spin 1 fields... all "are messengers" of a fundamental force of nature all have a reasm...

Symmetries are king of the universe and the queen was Emmy Noether

Symmetry in the FORM of a mathematical model

Physical conservation laws.

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x)+v \psi(x)=E \psi(x)
$$

How about: $\quad \psi(x) \rightarrow \psi^{\prime}(x)=e^{i \alpha(x)} \psi(x)$

$$
\text { "LOCAL" } \underset{<}{ }
$$

derivatives complicate this.

$$
\begin{array}{ll}
\Longrightarrow & \frac{\partial \psi^{\prime}}{\partial x}= \\
\longrightarrow \frac{\partial^{2} \psi^{\prime}}{\partial x} \cdot & \frac{\partial \alpha}{\partial x} e^{i \alpha} \psi+e^{i \alpha} \frac{\partial \psi}{\partial x} \\
\text { substitute } & \frac{\partial}{\partial x^{2}} e^{2} \psi+2 i \frac{\partial \alpha}{\partial x} \frac{\partial \psi}{\partial x} e^{i \alpha}-\left(\frac{\partial \alpha}{\partial x}\right)^{2} \psi e^{i \alpha}+e^{i \alpha} \frac{\partial^{2} \psi}{\partial x^{2}}
\end{array} \underbrace{\longrightarrow} \begin{aligned}
&
\end{aligned}
$$

$$
E \psi(x)=-\frac{\hbar^{2}}{2 m} \underbrace{\left[\frac{\partial}{\partial x}+i \frac{\partial \alpha}{\partial x}(x)\right.}]^{2} \psi(x)+v(x) \psi(x, t)
$$

nope.- no longer the schrodinger equation.
BUT. DEMAND THIS SYMMETRY 六 ACCEPT CONSEQUENCES
$\left[\frac{\partial}{\partial x}+i \frac{\partial \alpha}{\partial x}(x)\right]^{2} ?$ that's minimum coupling to $E \frac{\hat{k}}{\mu} M$

If the universe prioritizes this loci symmetry?
then it had to invent the photon $\&$ its coupling to is SYMMERTES seem to be prior \rightarrow all vector fields come from this premise

