6. Quantum Mechanics 2, 1
lecture 21, October 16, 2017

housekeeping

exam 2: Friday, October 27

Tomorrow

The department has an "Investiture"...I have to be an adult and give a speech down the hall

I'll figure out some way for the "HW Workshop" to happen.

today

finish Uncertainty Principle Schroedinger Quantum Mechanics
 wave functions

Heisenberg Uncertainty Principle

$$
\Delta p \Delta x \geq \frac{\hbar}{2}
$$

$$
\frac{1}{2}
$$

$$
\Delta E \Delta t \geq \frac{\hbar}{2}
$$

- promaties of all waves
- de Broglie makes it seem strange

A few yeurs agp...
pulked over for domp $105 \mathrm{mph}^{*}$ State potice vodar: $\sim 20 \mathrm{GHz}, \lambda \sim 14 \mathrm{~cm}$ Could he vesobe my sqeed? Really?

$$
\begin{array}{rl}
\Delta x \Delta p \geq \frac{\hbar}{2} & \Delta p=m \Delta v \\
\Delta p=\frac{\hbar}{2} \Delta x & m \cong 1500 \mathrm{kq} \\
\Delta v m=\frac{\hbar}{2 m \Delta x}= & \\
\Delta v=\frac{\hbar}{2(\Delta d)(m)}= & \frac{1.05 \times 10^{-34} \mathrm{~J} .5}{2(0.14 \mathrm{~m})(1500 \mathrm{kq})} \\
\Delta v & \approx 3.5 \times 10^{-37} \mathrm{~m} / \mathrm{s}
\end{array}
$$

* it wes amither blach BMW... not me!

Elcation in 1st Bohr oubit... $^{\text {St }}$
vewarber, I cabulatad $\quad v \simeq 2 \times 10^{6} \mathrm{~m} / \mathrm{s}$
colulate $\triangle E$

$$
\begin{aligned}
& \Delta x \Delta p \geq \frac{\hbar}{2} \\
& \Delta x=\frac{\hbar}{2 \Delta p}=\frac{\hbar p \sim m v}{2 m v}=\frac{1.05 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{(2)\left(9 \times 10^{-31} \mathrm{hq}\right)\left(2 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)} \\
& \Delta x=3 \times 10^{-11} m=0.3 \AA \sim a_{0}
\end{aligned}
$$

HOW DO WE TANNIC ABOUT TAIS?
Sometimes Uncertainty is a part of the job
lifetimes... see below
sometimes Uncertainty is an epistemological._ challenge
If it is impossible to precisely measure a position of an object can we claim that an absolute PLACE is an attribute that obiucts possess?

Deternism: classically_aive we \vec{x} and $\vec{p} \approx I$ cam predict precisely the future now - you cant give we \vec{x} or \vec{p}

Vacuum: canst be state of zero enevqu...noshing can have $E=0$

CIFETIMES
in deccup - atomíc, unclear, elewantam pacticles.
$\Delta E \Delta t \geq \frac{\hbar}{2} \quad$ caU $\Delta \tau$ the liferinee of an unstable pacticle, τ

$$
\tau \geq \frac{\hbar}{2} \frac{1}{\Delta E}
$$

a shent riferime \Rightarrow lage uncertainty in energ (eneugy level or invariantmass)
Fermis Discovery of the Δ^{t+} resonavee

$$
\uparrow_{K} \simeq 195 \mathrm{MeV}
$$

interpreted as

$$
\pi^{+} p \rightarrow S^{*} \rightarrow \pi^{+} p
$$

\uparrow
an excited-borndstute that decays into $\pi^{+} p$

The modern quart view: $\pi+(u \bar{d}) p$ (and)

From everqu and momentum cossenation, the situation:

$$
\begin{aligned}
& \text { before } \\
& \text { AFTER } \\
& \cdot \xrightarrow{K_{\pi}} \quad \text { e } \quad P(\text { stationary }) \\
& \longrightarrow \\
& \triangle \\
& \left(m_{\pi}, P_{\pi}\right) \\
& \text { (mp,o) } \\
& \left(M_{\Delta}, P_{\Delta}\right) \\
& M_{\Delta}^{2} c^{4}=m_{\pi}^{2} c^{4}+m_{p}^{2} c^{4}+2\left(k_{\pi}+m_{\pi} c^{2}\right)\left(m_{p} c^{2}\right) \\
& \text { show this } \\
& \text { Cl } 8 \text { problem- } \\
& =(0.139)^{2}+(0.938)^{2}+2(0.195+0.139)(0.938) \\
& \cong 1235 \mathrm{MKV}
\end{aligned}
$$

$\underbrace{\sim}$
P~ loose
$\Delta E \Delta t \geq \frac{\hbar}{2} \quad$ cal $\Delta \tau$
$\tau \geq \frac{\hbar}{2} \frac{1}{\Delta E}$ a shoot

$$
\begin{aligned}
& \tau_{\Delta}=\frac{\hbar}{2} \frac{1}{\Delta E}=\frac{\hbar}{2} \frac{1}{\Gamma}=\frac{\hbar}{\Gamma} \\
& \tau_{\Delta}=\frac{6.6 \times 10^{-16} \mathrm{eV} \cdot \mathrm{~s}}{1 \times 10^{8} \mathrm{eV}} \cong 6 \times 10^{-24} \mathrm{~s}
\end{aligned}
$$

Arbitrary data from Westfall's experiment at RHIC

$$
\begin{aligned}
\text { Mass of } \Delta^{++}: & M_{\Delta} \pm \Delta E \\
& M_{\Delta} \pm \frac{\Gamma}{2}
\end{aligned}
$$

Measure Γ, calculate τ

Conjugate variables
Have you noticed a pattern?

$$
\begin{aligned}
& x \longleftrightarrow P_{x} \\
& y \longleftrightarrow P_{y} \\
& z \longleftrightarrow P_{3} \\
& t \longleftrightarrow E
\end{aligned}
$$

Relativity: interval ... $s^{2}=(c t)^{2}-x^{2}-y^{2}-z^{2} \leftarrow$ always invariant

$$
\text { energy - }\left(m_{0} c^{2}\right)^{2}=E^{2}-p_{x}^{2} c^{2}-p_{4}^{2} c^{2}-p_{3}^{2} c^{2} \leftarrow \text { always } \text { invavidut }
$$

now Uncertainty:

$$
\begin{aligned}
& \Delta x \Delta p \geq \frac{\hbar}{2} \\
& \Delta E \Delta t \geq \frac{\pi}{2}
\end{aligned}
$$

Quantum Mechanics born of some anxiety

the lack of radiation of Bohr's accelerating electrons was still a problem: Bohr knew it and figured there would be a more complete answer.

There was mudh that was ad hoc and not believable both in Bohr's approach and deBroglie's
however, the experimental situation made it clear that the broad suppositions of both had to be a part of the truth.
Quantum Mechanics, proper was the child of $3+1$ people:
Werner Heisenberg - 1925; invention \#1
Erwin Schrödinger - 1926; invention \#2
Paul Dirac - 1925; showed \#1 and \#2 are equivalent
Max Born - 1926; gave the modern interpretation

the breakthrough

from an unlikely source
either Erwin Schrödinger
or Erwin Schrodinger

Erwin Schroedinger 1887-1961
or Erwin Schroedinger
where do you look for your keys in the dark?

Schroedinger was an expert
in the mathematics of waves
EM waves, material waves, fluids, elastic media, sound...

integers again

$u(r, t)=\sum_{m=0}^{m=\infty} \sum_{k=0}^{k=\infty}\left[\left(A_{m k} \cos \omega_{m k} t+B_{m k}\left(\sin \omega_{m k} t\right) \cos \theta+\left(A_{m k} \cos \omega_{m k} t+B_{m k} \sin \omega_{m k} t\right) \sin \theta\right] J_{m}\left(\frac{\omega_{m k} r}{v}\right)\right.$
Solutions for the vibrations of a drumhead, or a violin string, or that vibrating hoop...
Forget the details...just notice the mixing of lots of waves...the m's and k's? Integers.
Here are some of these infinite modes of vibration as described by some of the functions (white and brown are moving in opposite directions (the drum is clamped down at the edges)

Schroedinger "solved" a drum-head-like equation for the hydrogen atom

Discrete, vibrational modes...of a something.

terrific

what's waving???

However, he was in for a surprise -

Brave guy: worked in the alps over Christmas 1925 with his girlfriend while his wife stayed in Zurich.

The surprise, is that the mathematics required that the state of such a system had to be

```
IMOgGibary!!
```

Solutions: the Bohr atom bang-on.

the "quantum field"

"psi"...also called the "wavefunction"
the "state" of something.
The "Schroedinger Equation"

t

 predicts its behavior in space and time

REPLAY: OPTICS

Brightness \Rightarrow intensity

$$
\begin{aligned}
& I=c \epsilon_{0} E_{T}^{2} \\
& E_{T}=E_{A}+E_{B} \\
& E_{T}^{2}=E_{A}^{2}+E_{B}^{2}+2 E_{A} E_{B}
\end{aligned}
$$

$$
\uparrow
$$

constructive ξ.

$$
I=c \epsilon_{0} E^{2}=N h f
$$ destructive interference

get a classical analogy

$$
N(\gamma) \propto E^{2}
$$

Electrons are waves
Then diffract: aviel you saw it!
What's "usaving" for electrous?
THE WAVEFUNCTION $\psi(x, t)$ TBraineinild of Erwivi Schröodinger...

In quaintum mechaincs we dout use sines ov cosines, we use both for qenality:

$$
A e^{i x}=A \cos x+A i \sin x \quad \text { Enler's Relation }
$$

A geneval wavefuction: Remumber: $E=h f \frac{1}{\xi} 2 \pi f=\omega$

$$
\psi(x, t)=A e^{2 \pi i\left(\frac{x}{\lambda}-f t\right)}
$$

so
and: $P=\frac{h}{\lambda}, \frac{p}{h}=\frac{1}{\lambda}$

$$
\psi(x, t)=A e^{i\left(P_{x} x-E t\right) / \hbar}
$$

$$
\frac{2 \pi}{\lambda}=\frac{2 \pi p}{h}=\frac{p}{\hbar}
$$

Motim of our election.. in wave packets... has a particle \longleftrightarrow wave ... tentative relationship So think "particle" for a minute

Enerqy:

$$
\frac{p^{2}}{2 m}+u=E
$$

non relativistic
(therés a story there)
whatever schroedinger was to
do... This should be.. somewhere!

Some "arbitrorvy" differentiatim...

$$
\begin{aligned}
& \frac{\partial \psi}{\partial x}=\frac{i}{\hbar} p_{x} \psi \\
& \frac{\partial^{2} \psi}{\partial x^{2}}=-\frac{1}{\hbar^{2}} P_{x}^{2} \psi \\
& \frac{\partial \psi}{\partial t}=-\frac{i}{\hbar} E \psi
\end{aligned}
$$

$$
\psi(x, t)=A e^{i\left(P_{x} x-E t\right) / \hbar}
$$

from the right
Take the energy equation and multiply by $\leftarrow \psi(x, t)$

$$
\frac{p^{2}}{2 m} \psi(x, t)+u \psi(x, t)=E \psi(x, t)
$$

and Nor arose. $P_{x}^{2} \psi=-\hbar^{2} \frac{\partial^{2} \psi}{\partial x^{2}} \psi \quad E t=-\frac{\hbar}{i} \frac{\partial \psi}{\partial t}$

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x, t)+u(x) \psi(x, t)=-\frac{\hbar}{i} \frac{\partial}{\partial t} \psi(x, t)
$$

THE TIME-DEPENDENT SCHROEDINGE EQUATION

A RECIPE: knot to qu from classical plyyias to quantum physics

DEFINE THE MOMENTUM OPERATOR $\hat{P}_{x} \equiv \frac{\hbar}{i} \frac{\partial}{\partial x}$
DEFINE THE ENERGY OPERATOR $\hat{E} \equiv-\frac{\hbar}{i} \frac{\partial}{\partial A}$

TAKE ANY CLASSICAL EQUATION AND MAKE SUBSTITUTIONS:

$$
\begin{aligned}
P_{x, y, z} & \longrightarrow \hat{P}_{x, y, z} \\
E & \longrightarrow \hat{E}
\end{aligned} \quad \text { (and "operate on" } \psi
$$

CALLES "FIRST QUANTIZATION" this "to quantize"

