6. Quantum Mechanics 2, 2
lecture 22, October 18, 2017

## housekeeping

I got nothin'


## today

## real quantum mechanics



$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x, t)+u(x) \psi(x, t)=-\frac{\hbar}{i} \frac{\partial}{\partial t} \psi(x, t)
$$

THE TIME-DEPENDENT SCHROEDINGE EQUATION

DEFINE THE MOMENTUM OPERATOR $\hat{P}_{x} \equiv \frac{\hbar}{i} \frac{\partial}{\partial x}$
DEFINE THE ENERGY OPERATOR

$$
\hat{E} \equiv-\frac{\hbar}{i} \frac{\partial}{\partial t}
$$

TAKE ANY CLASSICAL EQUATION AND MAKE SUBSTITUTIONS:

$$
\left.\begin{array}{rl}
P_{x, y, z} & \longrightarrow \hat{P}_{x, y, z} \\
E & \longrightarrow \hat{E}
\end{array}\right\} \text { and "operate on" } \psi
$$

CALLED "FIRST QUANTIZATION" this "To quantize"

PROPERTIES OF $\psi(x, t)$ boundary conditions in solving the S.E.

1) 4 must be finite everywhere
2) $\psi$ must be single-varlued
3) $\psi$ and $\frac{\partial \psi}{\partial x}$ must be contimous at any potential (u) boundary
4) $\psi \rightarrow 0$ as $x \rightarrow \pm \infty$
5) OBTW... 4 is complex
uh oh... not line $E$ of ontic
...cannot be an actual thing
$\rightarrow$ we cain touch, smell, measure, feel, watch, interact with, or defect the wave function Is it real? Join the argumat.- surely not

This hothered schrodinger. we an know how to woke an imaginary variable $A$ into a real variable

$$
A^{*} A
$$

so he first tried to say y:

$$
\psi^{*}(x, t) \psi(x, t) d x=|\psi(x, t)|^{2} d x=c(x) d x
$$

electron charade density
NOPE
The answer is strange.


Sandy: Oh Danny, is this the end?
Danny: No Sandy. It's only the beginning.

"I am now convinced that theoretical physics is actually philosophy."

Olivia Newton down's grand pa


Max Born
figured it out

$$
|\psi(x, t)|^{2} d x=F(x) d x
$$

the probability density of finding the qisautum particle represented by $\psi(x, t)$ between $x \frac{1}{c} x+d x$
$\psi$ sometimes called the probability amplitude

The probability that the partice... $15 \ldots=1.0$ If has to be someplace
So a conditim on $\psi: \quad \int_{-\infty}^{\infty} \psi^{*}(x, t) \psi(x, t) d x=1=P=\int_{-\infty}^{\infty} P(x) d x$
pronatility... so. camot be >1
we "norwahige" wavefunctions in order to insure this
Cestaink, the particle need not be every where wonder about $x_{A}$ to $x_{B}$ ? Calculate: $\int_{x_{A}}^{x_{B}} \psi^{*}(x, t) \psi(x, t) d x$

No potential? No problem.. $u=0$ wears free.
Then $E=\frac{P^{2}}{2 m} \quad$ BUT

$$
\psi(x, t)=e^{i\left(p_{x} x-E t\right) / \hbar}
$$

cant be the warefunction since

$$
\pi \quad \int_{-\infty}^{\infty} \psi^{*} \psi d x=\infty
$$

But not unexpected
implies a particular $P_{x}$ aud pactialar $x$ Uncertainty frisids that.
$U$ often determines the form of $\psi$

$$
u=u_{\uparrow}^{u}(x, t) \quad w \quad u(x)
$$

time dependent time independent

TIME INDEPENDENT $u(x)$ then $\psi$ factrizes and solutions to the S.E. can be explored

$$
\bar{\Psi}(x, t)=\psi(x) e^{-i \omega t}=\psi(x) e^{-i E t / \hbar}
$$

uppercase lower case

Now:

$$
\begin{aligned}
\hat{E} \Psi(x, t) & =i \hbar \frac{\partial}{\partial t}(x, t) \\
& =i \hbar \psi(x) \frac{d}{d t} e^{-i E t / \hbar} \\
& =i \hbar\left(-\frac{i E}{\hbar}\right) \psi(x) e^{-i E t / \hbar} \\
& =E \Psi(x, t)
\end{aligned}
$$

So, $\quad \frac{p^{2}}{2 m}+U(x)=E \xrightarrow{18 t \text { qua }}$

$$
\begin{aligned}
& \quad-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \Psi(x, t)+u(x) \Psi(x, t)=i \hbar \frac{\partial}{\partial t} \Psi(x, t) \\
& -\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x) e^{-i E t / \hbar}+u(x) \psi(x) e^{-i E t / \hbar}=E \psi(x) e^{-i E t / \hbar}
\end{aligned}
$$

multiply $e^{+i E t / \hbar} \rightarrow$

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)+u(x) \psi(x)=E \psi(x)
$$

TIME INDEPENDENT SCHROENDINGER EQUATION

Prohatilifies:

$$
\begin{aligned}
\int \Psi^{*}(x, t) \Psi(x, t) d x & =\int \psi^{*}(x) \psi(x) e^{+i 巨 t / \hbar} e^{-i E t / \bar{h}} d x \\
& =\int \psi^{*}(x) \psi(x) d x \neq f(t)
\end{aligned}
$$

Think about weighted avevaqes

How do wou cabvlate your gra?

$$
\begin{aligned}
\langle\text { arade }\rangle & =\frac{N_{4.0}(4.0)+N_{3.5}(3.5)+\cdots}{N_{4.0}+N_{3.5}+\ldots} \\
\langle x\rangle & =\frac{N_{1} x_{1}+N_{2} x_{2}+\ldots}{N_{1}+N_{2}}=
\end{aligned}
$$

A continons quautity?

$$
\langle x\rangle=\frac{\int_{-\alpha}^{\infty} x P(x) d x}{\int_{-\infty}^{\infty} P(x) d x}
$$

In Quantum Mechanics averages are called Expectation Values

$$
\langle x\rangle=\frac{\int_{-\infty}^{\infty} x \psi^{\alpha}(x) \psi(x) d x}{\int_{-\infty}^{\infty} \psi^{*}(x) \psi(x) d x}
$$

works fr functions:

$$
\langle f(x)\rangle=\frac{\int_{-\infty}^{\infty} \psi^{*}(x) f(x) \psi(x) d x}{\int_{-\infty}^{\Delta} \psi^{y}(x) \psi(x) d x} \quad \text { order matters }
$$

Many expectation values are operators, so must appear operating to the RICAHT $\rightarrow$

OBSERVABLES:
represented by OPERATORS TAIS WAY

$$
\langle A\rangle=\frac{\int_{-\infty}^{\infty} \Psi(x, t) \hat{A} \Psi(x, t) d x}{\int_{-\infty}^{\infty} \Psi(x, t) \Psi(x, t) d x}
$$

Were seen 2 so far $P$ and $E \longrightarrow \hat{P}$ aud $\hat{E}$ we can certainly measure (observables) a sustemis average position and/or average momentum and /or averaq every

$$
\langle x\rangle
$$

$\langle p\rangle$

$$
\langle E\rangle
$$

$$
\begin{aligned}
& \left\langle p_{x}\right\rangle=\frac{\int_{-\infty}^{\infty} \Psi^{*}(x, t) \hat{p}_{x} \Psi(x, t) d x}{\int_{-\alpha}^{\infty} \Psi(x, t) \Psi(x, t) d x} \\
& \left\langle p_{x}\right\rangle=-i \hbar \frac{\int_{-\infty}^{\infty} \Psi^{*}(x, t) \frac{\partial}{\partial x} \Psi(x, t) d x}{\int_{-\infty}^{\infty} \Psi^{*}(x, t) \Psi(x, t) d x} \\
& \langle E\rangle=i \hbar \frac{\int_{-\infty}^{\infty} \Psi^{*}(x, t) \frac{\partial}{\partial t} \Psi(x, t) d x}{\int_{-\infty}^{\alpha} \Psi^{*}(x, t) \Psi(x, t) d x}
\end{aligned}
$$

The circumstances determine the functional from of $\Psi(x, t)$ $\uparrow$ $u(x, t)$

$V(\eta)$ characterizes your state of motion and possininties

Opevators:

| position | $\hat{x}$ | $x$ |
| :--- | :---: | :---: |
| morvactum | $\hat{P_{x}}$ | $\frac{\hbar}{i} \frac{\partial}{\partial x}$ |
| enagM | $\hat{E}$ | $i \hbar \frac{\partial}{\partial t}$ |
| kimetic E | $\hat{K}$ | $-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}$ |
| potetenticl E | $\hat{V}$ | $V(x)$ |

"particle in a box" "infinite square well"

Eigenvalue equations: give me the potential I'n ten son 4 and $E$ ... basically
"Infinite square well"


$$
\begin{array}{ll}
v(x)=\infty & x<0 \\
v(x)=\infty & x>L \\
v(x)=0 & 0<x<L
\end{array}
$$

In S.E. $\quad V=\infty$, then $\psi(x)=0$ So:

$$
\langle A\rangle_{x>L}=\int_{L}^{\infty} \psi^{*}(x) \hat{A} \psi(x) d x=0 \text { since } \psi=0
$$

inside the well? $\quad V(x)=0 \quad 0<x<L$
STE.

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)+0=E \psi(x) \\
\frac{d^{2}}{d x^{2}} \psi(x)=-\frac{2 m}{\hbar^{2}} E \psi(x)
\end{gathered}
$$

ottar work w/ ware number

$$
\begin{aligned}
& h=\frac{P}{\hbar}=\frac{\sqrt{2 m E}}{\hbar} \\
& h^{2}=\frac{2 m E}{\hbar^{2}}
\end{aligned}
$$

$$
\frac{d^{2}}{d x^{2}} \psi(x)=-h^{2} \psi(x)
$$

Lots of average quantities coming..


What's the average value?

$$
\begin{aligned}
\langle x\rangle & =\frac{\int_{-\infty}^{\infty} x P(x) d x}{\int_{-\infty}^{\infty} P(x) d x} \\
& =\begin{aligned}
\int_{x_{1}} x(x) & \left.=0 \quad x<x_{1} \quad x\right\rangle x_{2} \\
& =A \quad x_{1}<x<x_{2}
\end{aligned} \\
\frac{\int_{x_{2}}^{x_{2}} x A d x}{\int_{x_{1}}^{x_{2}} A d x}=\frac{\left.A \frac{x^{2}}{2}\right|_{x_{1}} ^{x_{2}}}{\left.A x\right|_{2} ^{x_{2}}} & =\frac{\frac{1}{2}\left(x_{2}^{2}-x_{1}^{2}\right)}{x_{2}-x_{1}}
\end{aligned}=\frac{1}{2}\left(x_{2}-x_{1}\right)
$$

$$
\frac{d^{2} \psi(x)}{d x^{2}}=-h^{2} \psi(x)
$$

This is a faniliau differeutial equation.
qencual solhtions: $\quad \psi(x)=A \sinh x+B \cosh x$
Inprse bounday condifins:

$$
\begin{array}{ll}
\psi(0)=0 \Rightarrow B=0 & \text { so: } k L=n \pi \\
\psi(L)=0 \Rightarrow \psi(L)=A \sin k L=0 & \Rightarrow \psi_{n}(x)=A \sin \left(\frac{n \pi x}{L}\right)
\end{array}
$$



Normelization:

$$
\int_{-\infty}^{0} \psi^{*}(x) \psi(x) d x=1=A^{2} \int_{0}^{L} \sin ^{2}\left(\frac{n \pi x}{L}\right) d x \rightarrow \text { qives us } A \text {. }
$$

$$
\begin{array}{ll}
\int \sin ^{2} x d x= & \frac{1}{2} x-\frac{1}{4} \sin 2 x \\
y=\frac{n \pi x}{L} & \int_{0}^{L} \sin ^{2} x d x=\int_{0}^{n \pi} \sin ^{2} y\left(\frac{L}{n \pi}\right) d y \\
d y=\frac{n \pi}{L} d x & \quad 1=A^{2} \cdot\left(\frac{L}{2}\right) \Rightarrow A=\sqrt{\frac{2}{L}} \\
\left.d x=\frac{L}{n \pi} d y \quad=\frac{L}{n \pi}\left[\left.\frac{1}{2} y\right|_{0} ^{n \pi}-\left.\frac{1}{4} \sin 2 y\right|_{0} ^{n \pi}\right]=\frac{L}{n \pi}\left[\frac{1}{2} \cdot n \pi-0\right]=\frac{L}{2}\right]
\end{array}
$$

So the properly normalized wove functions are:

$$
\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right) \quad n=1,2 \ldots \quad \text { STANDING WANES }
$$

Envies:

\[

\]

1) started with potential
2) Solved Schreedinger Equation generally $\rightarrow \psi_{1}$
3) imposed boudany conditions to simplify $\rightarrow \notin$
4) novwalizel $\psi \rightarrow \psi_{\text {Fine, } n}$
5) evaluated $E_{n}$

Look at lowest state $\quad n=1 \quad \psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)$

$$
\begin{aligned}
& \psi_{1}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{\pi}{L} x\right) \\
& \text { with } E=\pi^{2} \hbar^{2}+0 \quad 1 \quad \psi_{1}+0
\end{aligned}
$$

with $E_{1}=\frac{\pi^{2} \hbar^{2}}{2 m L^{2}} \neq 0$ !
Dourest state has finite energy.
Where is the election? $\rightarrow$ an we can calculate no a probability.

$$
P \propto \quad|\psi|^{2}
$$


"where is it"? not a valid question.
$z^{n e}$ level $n=2$

$$
\begin{aligned}
& \psi_{2}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{2 \pi x}{L}\right) \\
& E_{2}=4 E_{1}=\frac{4 \pi^{2} \hbar^{2}}{2 m L^{2}}
\end{aligned}
$$

Probability?
more ouch.
How does it "get" from $A$ to $B$ withent passing through $C$ ? another meaningless question.

um.

Likely equallylituly here here
 zero-point energy kopreus all the fime in QM uncertainty demauds it!

$$
\begin{aligned}
& E_{1}=\frac{\pi^{2} \hbar^{2}}{2 m L^{2}} \\
& \frac{P_{1}^{2}}{2 m}=E_{1} \Rightarrow \quad \frac{P_{1}^{2}}{2 m}=\frac{\pi^{2} \hbar^{2}}{2 m L^{2}}
\end{aligned}
$$

vucentainty in position $\Delta x \cong L / 2$ ucertaintry in wom: $\Delta P \sim P_{1} / 2$

$$
\begin{aligned}
& P_{1}=\frac{\pi \hbar}{L} \\
& 2 \Delta p=\frac{\pi \hbar}{2 \Delta x} \\
& \Delta p \Delta x=\frac{\pi \hbar}{4}=\frac{\pi}{2} \frac{\hbar}{2} \geq \frac{\hbar}{2}
\end{aligned}
$$

Phusics Heve?
glad wou ashed.
I many plusical systems that can be annuoximated by


A priton traspel inside of a uncleus
E\&M repulsion? Docsit watter... strang fnce is way stronqen


$$
\begin{aligned}
E_{1} & =\frac{\pi^{2} \hbar^{2}}{2 m L^{2}} \\
& =\frac{\pi^{2}(\hbar c)^{2}}{2 m c^{2} D N^{2}} \\
& =\frac{\pi^{2}\left(200 \mathrm{eV}^{2} \cdot \mathrm{~nm}\right)^{2}}{2\left(938 \times 10^{6} \mathrm{eV}\right)\left(4 \times 10^{-6} \mathrm{~nm}\right)^{2}} \\
& =1.3 \times 10^{7} \mathrm{eV} \\
E_{1} & =13 \mathrm{MeV} \text { not bad }
\end{aligned}
$$

LIMITED REGION?

$$
\begin{aligned}
P(A)_{n} & =\int_{L / 4}^{3 / 4} \psi^{*}(x) \psi(x) d x \\
= & \frac{2}{L} \int_{L / 4}^{34 / 4} \sin ^{2}\left(\frac{n \pi x}{L}\right) d x \\
& \vdots \\
& =\frac{2}{L}\left[\frac{L}{4}-\frac{L}{4 \pi n}\left(\sin \frac{6 \pi n}{4}-\sin \frac{2 \pi n}{4}\right)\right] \\
P(A)_{n} & \left.=\frac{1}{2}-\frac{1}{\pi n}\left(\sin \frac{6 \pi n}{4}-\sin \frac{2 \pi n}{4}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
n=1 ? P(A)_{1} & =\frac{1}{2}-\frac{1}{\pi}\left(\sin \frac{6 \pi}{4}-\sin \frac{2 \pi}{4}\right) \\
& =\frac{1}{2}-\frac{1}{\pi}(-1-1) \\
& =\frac{1}{2}+\frac{2}{\pi}
\end{aligned}
$$

$(2 / L) *$ Integrate $\left[\operatorname{Sin}[P i * x / L]^{\wedge} 2,\{x,(L / 4),(3 L / 4)\}\right]$
$\ln [1]=\frac{2+\pi}{2 \pi}$
Simplify[\%]
$\frac{2+\pi}{2 \pi}$
$\ln (5)=$ Evaluate [\%]
Our (5] $=\frac{1}{2}+\frac{1}{\pi}$
$\ln \left[(\theta)=N\left[\frac{1}{2}+\frac{1}{\pi}\right]\right.$
Out $[6]=0.81831$

How ahout very lagq $n$ ? $P(A)_{n} \rightarrow 0.5$, the clossical result. Bohr's Correspondaree Primiple again.

Uncertainty, Grown UP
Remewther the "standard Deviation"?
set of $N$ measurements, $x_{i}$
with mean, $\langle x\rangle$
a measure of uncertainty is the S.D.

$$
\frac{\sigma \equiv \sqrt{\sum_{i} \frac{\left(x_{i}-\langle x\rangle\right)^{2}}{N}}}{\sqrt{\sqrt{\frac{\sum_{n}\left(x_{i}\right)^{2}}{N}-2\langle x\rangle \sum_{i} x_{i}+\langle x\rangle^{2} \sum_{i} \frac{1}{N}}}=\sqrt{\left\langle x^{2}\right\rangle-2\langle x\rangle^{2}+\langle x\rangle^{2}}} \begin{aligned}
& \downarrow \\
& \left\langle x^{2}\right\rangle
\end{aligned}
$$

weill call his $(\Delta x)^{2}$
now: QM.
$\langle x\rangle=\int \psi^{*} \hat{x} \psi d x \quad$ fo the infinite square well.

$$
\begin{aligned}
\langle x\rangle & =\int_{0}^{L} x \sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right) \sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right) d x \\
& =\frac{2}{L}\left[\int_{0}^{1} x \sin ^{2}\left(\frac{n \pi x}{L}\right) d x\right] \\
\langle x\rangle & =\frac{2}{L} \cdot \frac{L^{2}}{4}=\frac{L}{2} \\
\left\langle x^{2}\right\rangle & =\frac{2}{L} \int_{0}^{L} x^{2} \sin ^{2}\left(\frac{n \pi x}{L}\right) d x \\
& : \quad \Delta x=\sqrt{\frac{L^{2}}{12}-\frac{L^{2}}{2 n^{2} \pi^{2}}}
\end{aligned}
$$

Mowentum: $\quad(\Delta p)^{2}=\left\langle p^{2}\right\rangle-\langle p\rangle^{2}$

$$
\begin{aligned}
& \langle p\rangle=\int_{0}^{L} \psi^{*} \hat{p} \psi d x \\
& =\frac{2}{L} \int_{0}^{L} \sin \left(\frac{n \pi x}{L}\right)\left(\frac{\hbar}{i}\right) \frac{\partial}{\partial x}\left[\sin \left(\frac{n \pi x}{L}\right)\right] d x \\
& =\frac{2}{L} \int_{0}^{L} \sin \underbrace{a}_{\text {ovd. evan } \left.\frac{n \pi x}{L}\right)\left(\frac{n \pi}{L}\right)\left(\frac{\hbar}{c}\right) \cos \left(\frac{n \pi x}{L}\right) d x}=0 \\
& \langle p\rangle=0 \\
& \left\langle p^{2}\right\rangle=\int \psi^{x} \hat{p}^{2} \psi d x=\int \psi^{*}-\hbar^{2}\left[\frac{\partial^{2}}{\partial} x^{2}\right] d x \\
& \left\langle p^{2}\right\rangle=\frac{n^{2} \pi^{2} \hbar^{2}}{L^{2}} \\
& \Delta p=\sqrt{\frac{n^{2} \pi^{2} \hbar^{2}}{L^{2}}-0}=\sqrt{\frac{n^{2} \pi^{2} \hbar^{2}}{L^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
\Delta x \Delta p & =\sqrt{\frac{c^{2}}{12}-\frac{L^{2}}{2 n^{2} \pi^{2}}} \cdot \sqrt{\frac{n^{2} \pi^{2} \hbar^{2}}{L^{2}}} \\
& \vdots \\
& =\frac{\hbar}{2} \sqrt{\frac{n^{2} \pi^{2}}{3}-2}=\frac{\hbar}{2} \sqrt{\underbrace{3.28 n^{2}-2}_{>1}}
\end{aligned}
$$

So:
$\Delta x \Delta P \geq \frac{\hbar}{2}$ as expected from the Uncertainty Principle

