5. Quantum Mechanics 1, 2
lecture 20, October 13, 2017

housekeeping

exam 2: Friday, October 27

Exam 1:

the average was 19/30 (not counting extra credit)
Watch the blog at 3pm on Sunday for instructions for an opportunity to recoup some points. You'll have 24 hours to accomplish this.

Next Tuesday

The department has an "Investiture"...I have to be an adult and give a speech down the hall

I'll figure out some way for the "HW Workshop" to happen.

today

waves...generic
waves...matter

Uncertainty

WAVES
Review (?) of mechanical wares
STRING THEORY?

Shunt section: T constant at both ends, but angles swoflth different
Vertically:

$$
\begin{aligned}
& \left(F_{\text {net }}\right)_{y}=T \sin (\theta+\delta \theta)-T \sin \theta \\
& f_{n} \operatorname{swall} \theta \quad \sin \theta \sim \tan \theta=\frac{\partial y}{\partial x} \rightarrow \text { slope at } \\
& \text { point } x
\end{aligned}
$$

y aves up and dom in time \Rightarrow transverse velocity $\frac{\partial y}{\partial t}$

$$
\left(F_{\text {net }}\right)_{y} \cong T\left[\left(\frac{\partial y}{\partial x}\right)_{x+\Delta x}-\left(\frac{\partial y}{\partial x}\right)_{x}\right]
$$

which wanes yon think "derivative"...

$$
\frac{\left(F_{\text {net }}\right)_{y}}{\Delta x}=T\left\{\frac{\left(\frac{\partial y}{\partial x}\right)_{x+\Delta x}-\left(\frac{\partial y}{\partial x}\right)_{k}}{\Delta x}\right\}
$$

ta ne limit $\Delta x \rightarrow 0$

$$
\lim _{\Delta x \rightarrow 0} \frac{\left(\frac{\partial y}{\partial x}\right)_{x+\Delta x}-\left(\frac{\partial y}{\partial x}\right)_{k}}{\Delta x}=\frac{2}{\partial x}\left(\frac{\partial y}{\partial x}\right)=\frac{\partial^{2} y}{\partial x^{2}}
$$

The of position is $y(x, t) \ldots$

$$
\left(F_{\text {net }}\right)_{y}=T \frac{\partial^{2} y}{\partial x^{2}} \Delta x
$$

$$
\left(F_{\text {net }}\right)_{y}=T \frac{\partial^{2} y}{\partial x^{2}} \Delta x
$$

The mass of that chunk is $m=\mu \Delta x$ \uparrow vas / length
From Neutoris zed:

$$
\begin{aligned}
& \left(F_{\text {net }}\right)_{y}=\sum F_{y}=m a_{y} \\
& T \frac{\partial^{2} y}{\partial x^{2}} \Delta x=\mu \Delta x \frac{\partial^{2} y}{\partial t^{2}}
\end{aligned}
$$

so

$$
\begin{aligned}
& \frac{\partial^{2} y(x, t)}{\partial x^{2}}=\left(\frac{\mu}{\bar{T}}\right) \frac{\partial^{2} y(x, t)}{\partial t^{2}} \\
& {\left[\frac{M}{T_{\text {en }}}\right]=\frac{[M / L]}{\left[\frac{M L}{T_{\text {ide }}^{2}}\right]}=\frac{T_{\text {wm }}^{2}}{L^{2}}=\left[\frac{1}{v}\right]^{2}}
\end{aligned}
$$

so that term is the inverse of the $\hat{\imath}$ velocity
... In an actual, material wave, its (mass/length $\frac{\text { tension }}{\text { tin }}$)

Ta Da:

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}} \text { is THE WAVE EQUATION }
$$

Red solutions: $\quad y(x, t)=A \sin \frac{2 \pi}{\lambda}(x \pm v t+\delta)$
¿ phase depends on where $t=0$, set $\delta=0$.
traveling waves $\quad y(x, t)=A \sin ^{2} \frac{\pi}{\lambda}\left(x_{ \pm} v t\right)$

(Q $t=t_{1}$

$$
t=t_{1}
$$

tout $y_{1}=y_{2}$ so:

$$
\begin{aligned}
x_{1}-v t_{1} & =x_{2}-v t_{2} \\
v & =\frac{x_{2}-x_{1}}{t_{2}-t_{1}}>0 \quad \text { since } x_{2}>x_{1}
\end{aligned}
$$

the - sign \Rightarrow wove morning R16tt

and

$$
\begin{aligned}
y(x, t) & =A \sin 2 \pi\left(\frac{x}{\lambda}-\frac{v}{\lambda} t\right) \\
& =A \sin 2 \pi\left(\frac{x}{\lambda}-f t\right)
\end{aligned}
$$

$$
y(x, t)=A \sin (h x-w t)
$$

at a given x_{1}, the ware is manning \uparrow
$T=$ period, time fun 1 vibration

$$
\begin{aligned}
& \frac{1}{T}=\text { rate of vibration }=\text { frequency. } \\
& f=\frac{1}{T} \quad \text { so } \quad \lambda=v T
\end{aligned}
$$

$v=f \lambda \equiv v_{p}$ "phase velocity"

Standard definitions:

$$
\begin{aligned}
& h=\frac{2 \pi}{\lambda} \text { "wave number " } L^{-1} \\
& \omega=2 \bar{u} f \text { "angular frequency" } T^{-1}
\end{aligned}
$$

$$
u_{p}=f \lambda=\left(\frac{\omega}{2 \pi}\right)\left(\frac{2 \pi}{h}\right)=\frac{\omega}{h} \text { phase veloint }
$$

advance $\delta=\frac{\pi}{2} \quad y(x, t)=A \sin (h x-\omega t+\pi / 2)=A \cos (h x-\omega t)$

2 waues: Superposition

$$
\begin{aligned}
& y=y_{1}+y_{2} \\
& =A \cos \left(h_{1} x-\omega_{1} t\right)+A \cos \left(h_{2} x-\omega_{2} t\right) \text { same } A \text {, diffenent } \lambda \leqslant T \ldots \\
& \cos a+\cos b=2 \cos \frac{1}{2}(a-b) \cos \frac{1}{2}(a+b) \\
& y=2 A \cos \frac{1}{2}\left\{\left(h_{2}-h_{1}\right) x-\left(\omega_{2}-\omega_{1}\right) t\right\} \cos \left\{\frac{h_{1}+h_{2}}{2} x-\frac{\omega_{1}+\omega_{2}}{2} *\right\} \\
& \Delta h=h_{2}-h_{1} \\
& \Delta w=w_{2}-w_{1} \\
& \bar{h}=\frac{h_{1}+h_{2}}{2} \\
& \bar{\omega}=\frac{\omega_{1}+\omega_{2}}{2}
\end{aligned}
$$

The envelope has a $v_{G}=\frac{\Delta \omega}{\Delta k} \quad .$. the original waves, y_{1} and y_{2} continue to have their ovignd

$$
v_{p_{1}}=\frac{\omega_{1}}{h_{1}} \text { anal } v_{p_{2}}=\frac{\omega_{2}}{\bar{h}_{2}}
$$

The whole system mores with modulation
 G is called a "wave packet"
Mathematical

$$
y=2 A \cos \{\underbrace{T \int_{T}}_{G} \frac{\Delta h}{2} x-\frac{\Delta \omega t}{2}\} \underbrace{\cos \{\bar{h} x-\overline{\omega t}\}}_{T}
$$

For a given time, the envelope is localized between x_{1} and x_{2} when

$$
\begin{aligned}
& \frac{\Delta h}{2} x_{2}-\frac{\Delta h}{2} x_{1}=\pi \quad \Delta x=x_{2}-x_{1} \\
& \Delta h \Delta x=2 \pi
\end{aligned}
$$

At a given position

$$
\Delta \omega \Delta t=2 \pi
$$

Fine-quained localization $\Rightarrow \Delta x$ swall $\Rightarrow \Delta k$ must be lang.

Until this point... ovey 2 waves.
a thue wavepachet win elear "edacs" avel Rocalizetion requines many.
From $\quad v_{c}=\left.\frac{\Delta w}{\Delta h} \rightarrow \frac{d w}{d n}\right|_{n .}$
'central wavenumber of lots of h 's
In seneral $w=h u_{p}$

$$
v_{G}=\left.\frac{d \omega}{d h}\right|_{h_{0}}=\left.v_{p}\right|_{h_{0}}+\left.h \frac{d u_{p}}{d h}\right|_{h_{0}}
$$

councution between v_{c} and v_{p}
velority dopends on wave number ... on wavelength
\rightarrow dispersion
eq qlass $n(\lambda)$

$$
\int \rightarrow>
$$

A couple of way p...

$$
y(x, t)=\sum_{i} A_{i} \cos \left(k_{i} x-\omega_{i} t\right)
$$

Fourier Series
or in a continuous spectrum

$$
y(x, t)=\int \tilde{A}(h) \cos (h x-\omega t) d h
$$

Fourier Integral
or for mroutical reasons..

$$
y(x, 0)=A e^{-\Delta k^{2} x^{2}} \cos \left(h_{0} x\right)
$$

Gaussian wave pocket

Whet about quautum plisics youie asking?

$$
E=h f=\frac{h \omega}{2 \pi}=\hbar \omega \Rightarrow \quad E=\hbar \omega
$$

de Brogle

$$
\xrightarrow[\text { assumption }]{\text { deBroqte }} p=\frac{h}{\lambda}=h \frac{h}{2 \pi} \quad \Rightarrow \quad p=\hbar k
$$

Graus velocity:

$$
\begin{gathered}
v_{p}=f \lambda=\frac{E}{h} \frac{h}{p}=\frac{E}{p} \\
E=\sqrt{p^{2} c^{2}+m^{2} c^{4}} \\
v_{p}=\sqrt{\frac{p^{2} c^{2}+m^{2} c^{4}}{p^{2}}}=c \sqrt{1+\left(\frac{m c}{p}\right)^{2}} \\
v_{p}=c \sqrt{l+\left(\frac{m c}{\hbar h}\right)^{2}}=v_{p}(h)
\end{gathered}
$$

$$
u_{p}=c \sqrt{l+\left(\frac{m c}{\hbar h}\right)^{2}}
$$

now: $\quad v_{G}=\left.v_{p}\right|_{h_{0}}+\left.h \frac{d v_{p}}{d h}\right|_{h_{0}}$

$$
\overline{v_{G}}=\frac{c}{\sqrt{1+\left(\frac{m c}{\hbar h}\right)^{2}}}=\left.\frac{c^{2}}{v_{p}}\right|_{k_{0}} \quad \text { hmm }
$$

Classical

$$
\lambda=h / m_{0} v
$$

delbroalic:

$$
\begin{array}{rlrl}
v_{p} & =f \lambda \\
& =\frac{E}{h} \cdot \frac{h}{p} \quad E=h f \quad p=\frac{h}{\lambda} & E^{2}=p^{2} c^{2}+m_{0}^{2} c^{4}=\left(m c^{2}\right)^{2} \\
v_{p} & =\frac{E}{p}=\frac{m c^{2}}{m v}=\frac{c^{2}}{v} & p=m_{0} \gamma v=m v
\end{array}
$$

BUT WE JUST FOUND
GROUP VELOCITY = PARTICLE VELOCITY

$$
v_{G}=\frac{c}{\sqrt{1+\left(\frac{m c}{\hbar n}\right)^{2}}}=\frac{c^{2}}{v_{p} / k_{0}}
$$

Think of a "particle" with mechanical velocity as represented by a wave packet with group velocity

HOW DO WE KNOW THAT SOMETHING IS... must "look" at it.
generalized "eyes".- detect n

object

Now... our object and pishe are both particles waves
imagine object is ting.. an electron

$$
\frac{\hbar}{6}
$$

prose is light

I'm now uncertain.
Heisenberg, in the best Einsteinian tradition, asked a simple question:
what's involved in measuring something...?

It's all about the deBroglie relation relating the wavelength of a quantum object

to its momentum

it was
 hard

A particle is HERE:

for photons
but for an electron?
A wave is EVERYWHERE:

wunnw

The deBroglie hypothesis:
of given momentum
also has

a single wavelength
immediate
implications

m

$$
p_{1}=\frac{h}{\lambda_{1}}
$$

wavelength and momentum are inversely linked
immediate
implications
$\sim \sim \sim$

$$
\begin{aligned}
& p_{2}=\frac{h}{\lambda_{2}} \\
& p_{2}<p_{1}
\end{aligned}
$$

long wavelength: low momentum
immediate
implications

$$
\begin{aligned}
& \text { NV } \\
& p_{3}=\frac{h}{\lambda_{3}} \\
& p_{3}>p_{1}
\end{aligned}
$$

short wavelength: high momentum
suppose we trap
an electron

Where's the electron?
somewhere here:
how to locate it better?

suppose

we trap

Where's the electron?
somewhere here:

make the trap smaller

$$
p=\frac{h}{\lambda} \quad \begin{aligned}
& \text { The wavelength is shorter... } \\
& \text { So the momentum is higher! }
\end{aligned}
$$

an inevitable trade-off
in order to make the location more precise
you pay the price that its speed is higher

Heisenberg Uncertainty Principle

the Heisenberg Uncertainty Principle

 was from 26 year old Werner Heisenberg an enigmainventor of many important concepts
did he save the west from a German nuclear bomb?

Werner Heisenberg 1901-1976
or the opposite?

measuring something...

you have to "look" at it
by eye or some external, intermediate probe
remember for waves what determines the scale?
wavelength
What if the object is atomic sized or smaller? ... what is it to "look"??

Heisenberg
Sweet spot for identifying an object: need $\lambda \sim$ size of the object
how do you measure the trajectory of an object?
look at it in Time
\rightarrow bounce light off it

uncertainty - sometimes called "'indeterminancy"’

Try to "see" and electron.
Electrons are small.
So...need light wavelength small.

Gedankenexperiment

So, make λ small to reduce Δx

Photon diffracts by the electron "barrier" and blurs the electron position by about the amount of the photon wavelength

$$
\begin{aligned}
& \text { But, } p=\frac{h}{\lambda} \text { makes } p \text { large! } \\
& \Delta p \sim \frac{h}{\Delta x} \begin{array}{l}
\text { so now } \\
\text { knowledge of } \\
\text { the } \\
\text { momentum is } \\
\text { blurred }
\end{array}
\end{aligned}
$$

there is
NO WAY to beat it in any of these measurement scenarios
the inverse relation between p and λ messes with you every time

$$
p=\frac{h}{\lambda}
$$

but here's the hard part

what does it mean?
the inability to determine position or momentum to arbitrary precision
is not about poor instruments
It. Is. About. Nature.

But, hold the
Light is also a particle

$$
p=\frac{h}{\lambda}
$$

\longleftarrow smaller the $\lambda \ldots$ higher the momentum ip

Location of an electron:
How well do yon know that it's here
 and not here?
using light?

Heisenberg thought experiment

to see it, the scattered γ must be: $-\theta$ to θ _ $\Delta \theta=2 \theta$
\downarrow
Lichs election w/ P_{x} between
$\Delta p=+\frac{h}{\lambda} \sin \theta$ to $-\frac{h}{\lambda} \sin \theta$
pansical optics sap smalent Δx :

$$
\begin{gathered}
\Delta x=\frac{\lambda}{2 \sin \theta} \\
\Delta x \Delta p=\frac{\lambda}{2 \sin \theta} \cdot \frac{2 h}{\lambda} \sin \theta=h
\end{gathered}
$$

cant use anything less than 1 puritan... were stuck

Heisenberg Uncertainty Principle

$$
\Delta p \Delta x \geq \frac{\hbar}{2}
$$

$$
\frac{1}{2}
$$

$$
\Delta E \Delta t \geq \frac{\hbar}{2}
$$

- promaties of all waves
- de Broglie makes it seem strange

