1. Special Relativity, 2

lecture 2, September 1, 2017

housekeeping

remember to check the course page:

chipbrock.org
and sign up for the feedburner reminders

I'll post something tonight...tell me if you don't get a message on Tuesday

STEVEN WEINBERG

Maxwell's Equations + 1

1. $\oint_{S} \vec{E} \cdot d \vec{S}=\frac{Q}{\epsilon_{0}}$
2. $\oint_{S} \vec{B} \cdot d \vec{S}=0$
3. $\oint_{\ell} \vec{E} \cdot d \vec{\ell}=\mu_{0} I+\mu_{0} \epsilon_{0} \frac{d \Phi_{E}}{d t}$

Gauss' Law for electrostatics
4. $\oint_{\ell} \vec{B} \cdot d \vec{\ell}=-\frac{d \Phi_{E}}{d t}$ Gauss' Law for magnetostatics

Ampere's Law
5. $\vec{F}=q \vec{E}+q \vec{v} \times \vec{B}$

Lorentz Force
$\epsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \quad$ vacuum permittivity $\quad \frac{1}{4 \pi \epsilon_{0}}=k_{e}=8.9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}$
$\mu_{0}=4 \pi \times 10^{-7} \mathrm{JA}^{-2} \mathrm{~m}^{-1}$
vacuum permeability

tracking

theory and experiment
circa 1900

differential form of

> Maxwell's

Equations

In general: $\quad \vec{E}=E_{x} \hat{\imath}+E_{\eta} \hat{\jmath}+E_{n} \hat{h}$
and to

$$
\vec{E}=-\left(\frac{\partial V}{\partial x} \hat{\imath}+\frac{\partial V}{\partial y} \hat{\jmath}+\frac{\partial V}{\partial z} \hat{h}\right)
$$

Standard calculus operator: gradient

$$
\vec{\nabla} \equiv \hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{h} \frac{\partial}{\partial z}
$$

so

$$
\vec{E}=\vec{\nabla} V
$$

Also... divergence

$$
\vec{\nabla} \cdot \vec{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial \eta}+\frac{\partial A_{z}}{\partial z}
$$

and.. curl

$$
\begin{aligned}
\vec{\nabla} \times \vec{A}=\hat{\imath} & \left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right)+\hat{\jmath}\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{3}}{\partial x}\right) \\
& +\hat{h}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right)
\end{aligned}
$$

Take a tiny volume

Imagine an $\vec{E}(x, y, z)$
 © bach face which changes at the front face

$$
\vec{E}(x, y, 3)+\left(\frac{\partial \vec{E}}{\partial x}\right) d x
$$

bach + chang

due to these two faces.

$$
\begin{aligned}
\begin{aligned}
\int \vec{E} \cdot d \vec{S} & = \\
\text { bach, front } & \vec{E} \cdot(-\hat{\imath} d y d z)+\left(\vec{E}+\frac{\partial \vec{E}}{\partial x} d x\right) \cdot(\hat{\imath} d y d z) \\
& =d x d y d z \frac{\partial}{\partial x}(\vec{E} \cdot \hat{\imath}) \\
& =d x d y d z \frac{\partial E_{x}}{\partial x} \quad \text { other faces? } \\
= & d x d y d z\left(\frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z}}{\partial z}\right) \quad \text { Similar. } \\
= & d x d y d z(\vec{\nabla} \cdot \vec{E})
\end{aligned}
\end{aligned}
$$

$$
\oint \vec{E} \cdot d \vec{s}=d x d y d z\left(\frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z}}{\partial z}\right)
$$

$$
\begin{aligned}
\oint \vec{E} \cdot d \vec{S} & =d x d y d z\left(\frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial \eta}+\frac{\partial E_{q}}{\partial z}\right) \\
& =d x d y d z(\vec{\nabla} \cdot \vec{E})
\end{aligned}
$$

Surrose then hod been a change inside?

$$
q=\rho d x d y d z
$$

OK:

$$
\begin{aligned}
& \Phi \vec{E} \cdot d \vec{S}=\frac{q}{\epsilon_{0}} \\
& \vec{V} \\
& d x d y d_{z}(\vec{\nabla} \cdot \vec{E})=\frac{d x d y d z \rho}{\epsilon_{0}} \\
& \vec{\nabla} \cdot \vec{E}=\frac{\rho}{\epsilon_{0}} \quad \begin{array}{l}
\text { Maxwell's Equation } \\
\text { gauss }
\end{array} \\
&
\end{aligned}
$$

T chang density

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{E}=\frac{\rho}{\epsilon_{0}} \\
& \vec{\nabla} \cdot \vec{B}=0 \\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \vec{\nabla} \times \vec{B}=\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t}+\mu_{0} \vec{J}
\end{aligned}
$$

FREE SPACE \rightarrow wo sources.

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{E}=0 \\
& \vec{\nabla} \cdot \vec{B}=0 \\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \rightarrow \vec{B} \quad \rightarrow \text { time chaveing } B ? \text { get } \perp \vec{E} \\
& \vec{D} \times \vec{B}=\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t} \rightarrow \text { time changing } E \text { ? jet } \perp \vec{B}
\end{aligned}
$$

$\vec{\nabla} \times \vec{B}=\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t}$

$$
\frac{\partial B_{z}}{\partial y}-\frac{\partial B_{\eta}}{\partial z}=\mu_{0} \epsilon_{0} \frac{\partial E_{x}}{\partial t}
$$

pith out a pactiorlar component: x
remember Mi s
now:

$$
\begin{aligned}
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \rightarrow \underbrace{\vec{\nabla} \times \vec{\nabla}} \times \vec{E}=\vec{\nabla} \times\left(-\frac{\partial \vec{B}}{\partial t}\right) \\
& \text { an identity } \\
& \nabla^{2} \vec{E}=\frac{\partial}{\partial t}(\vec{\nabla} \times \vec{B}) \\
& \vec{\nabla}^{2} \vec{E}=\mu_{0} \epsilon_{0} \frac{\frac{\partial}{2} \vec{E}}{\partial t^{2}} \rightarrow \nabla^{2} \vec{E}-\mu_{0} G_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}}=0
\end{aligned}
$$

Cine $\frac{\partial^{2} E}{\partial x^{2}}+\frac{\partial^{2} E}{\partial y^{2}}+\frac{\partial^{2} E}{\partial z^{2}} \quad$ anotha for \vec{B} also

$$
\nabla^{2} \vec{E}-\mu_{0} G_{t} \frac{\overrightarrow{2}^{2} \vec{E}}{\partial t^{2}}=0
$$ anotha for \vec{B} also

lock at $\frac{\partial^{2} \phi}{\partial x^{2}}-\frac{1}{v^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}=0$
\rightarrow a wove equation fin ϕ with velocity v.
a wave equation $f_{n} \vec{E}$
with velocity $v=\sqrt{\frac{1}{\mu_{0} \epsilon_{0}}}$
ONE OF THOSE WOW MOMENTS IN THEORETICAL PHYSICS

$$
\begin{aligned}
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{~N} \cdot \mathrm{C}^{-2} \mathrm{~s}^{2} \\
& \epsilon_{0}=8.8542 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}
\end{aligned}
$$

so

$$
\begin{aligned}
\sqrt{\frac{1}{\mu_{0} \epsilon_{0}}} & \left.=\sqrt{\left(4 \pi \times 10^{-7} \frac{1}{N^{2}}\right)\left(8.6542 \times 10^{-12} \frac{c^{2}}{N m^{2}}\right.}\right) \\
v & =2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}=c
\end{aligned}
$$

and $\quad|B|=|E| / C$

the $\frac{\partial E}{\partial t}$ causes the B
the $\frac{\partial B}{\partial t}$ causes the E
As non hum

$$
\begin{aligned}
& \vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B} \\
& {[s]=\frac{\text { energy }}{(\text { area })(\text { time })}}
\end{aligned}
$$

Intensity $=|\langle s\rangle|$

$$
=\frac{1}{\mu_{0}} B_{r m s} E_{r m s}=\frac{E_{r m s}^{2}}{\mu_{0} c}=\epsilon_{0} \subset E_{r m s}^{2}
$$

Summary

1. $\phi \vec{E} \cdot d \vec{S}=\frac{q}{\epsilon_{0}}$
2. $\phi \vec{B} \cdot d \vec{S}=0$
3. $\oint \vec{E} \cdot d \vec{l}=\mu_{0} I+\mu_{0} t_{0} \frac{d \Phi_{E}}{d t}$
4. $\phi \vec{B} \cdot d \vec{l}=-\frac{d \Phi_{E}}{d t}$

These are for "bilk" reirous of space and exteuld sowces... "Intaval form" Useful are versions which are infinitesimal \rightarrow "Differential from"

Useful: potential

$$
\begin{array}{ll}
E_{l}=-\frac{d V}{d l} & l=x \cdot u \cdot o v z \\
V=V(x, y, z)
\end{array}
$$

Now: experiments on light.

1. Speed of ligut 1676 Ole Römer

Nerton or thuggens $\rightarrow 16 \mathrm{~min}$ total

$$
C=\frac{93 \times 10^{6}}{8 \mathrm{~min}}\left(\frac{1 \mathrm{~min}}{605}\right)=200,00 \mathrm{mi} / \mathrm{s} \sim 156,900 \mathrm{mi} / \mathrm{s}
$$

2. Motion relative to the ether: Stellar Aberation Either: or:

earth moves though Ether

Abberation of starlight:

Suppose:
earth drams ETher

2. Motion relative to the ether: Fizeau's Ether-Draq Experiment speed
c_{w}

$\frac{c}{n}$ speed of C_{A}
: against current hight mu stationary water
water

$$
\begin{aligned}
& c_{w}=\frac{c}{n}+f v \\
& c_{A}=\frac{c}{n}-f v
\end{aligned}
$$

if ether dragged v
m water. -

$$
f \neq 1
$$

H. Fizeau 1851: $f \neq 0$

$$
f \neq 1!
$$

\Rightarrow some drag of Ether by water?
2. Motion relative to the ether: Michelson-Morley Experiment Measure the speed of earth relative to ether

on earth:
clever idea:

swimmers capable of speed v wry still water

$A B A:$
$A C A:$
$" \perp "$
still water: $\quad t_{\perp}($ still $)=\frac{2 L_{\perp}}{v} \quad t_{\|}($still $)=\frac{2 L_{1}}{v}$

$$
\begin{gathered}
t_{11}=\frac{2 L_{11}}{v} \frac{1}{1-u^{2} / v^{2}} \\
t_{1}=\frac{2 L}{v}+\frac{1}{\sqrt{1-\frac{u^{2}}{v^{2}}}} \quad \text { showthis } D 2
\end{gathered}
$$

Michelson's Idea

half-silvered mirror \Rightarrow beam splitter

1887

Albert A. Michelson
Share this:
The Nobel Prize in Physics 1907

Albert Abraham
Michelson
Prize share: $1 / 1$
The Nobel Prize in Physics 1907 was awarded to Albert A. Michelson "for his optical precision instruments and the spectroscopic and metrological investigations carried out with their aid".

Photos: Copyright © The Nobel Foundation
Share this:

To cite this page
Edward Morley

''Michelson Morley

trying to measure the speed of Earth relative to Ether

measure the fringes in light interfering from the two paths...then rotate the instrument 90 degrees - and do it again.

The differences between the two configurations is related to the time difference

$$
\begin{aligned}
& \boldsymbol{l}_{1} \\
& \overline{\text { mirror, } \mathrm{S}_{1}}
\end{aligned}
$$

Experiments"

This technique was perfected by cowboy, Albert Michelson and eventually his sidekick, Edward Morley at Case Western Reserve in Cleveland between 1880 and 1888

If the beams get back out of phase...one traveled through the ether differently from the other.

neat simulation

Centre for Visualization in Science

Finding new ways to see the world
Who Are We?

The King's Centre for Visualization in Science

The King's Centre for Visualization in Science is a research centre of The King's University, Edmonton, Alberta, Canada committed to improving the public understanding of science in Canada through the development of innovative ways to visualize science. Brian Martin and Peter Mahaffy are co-directors of the centre, working with an interdisciplinary team of undergraduate researchers.

The work of the centre has been funded by The King's University , NSERC through a Centres for Research in Youth Science Teaching Learning (CRYSTAL-Alberta) grant and the USRA program, SSHRC, and through research partnerships in the United States (NSF), and Australia (ARC).

Michelson's Idea

half-silvered mirror \Rightarrow beam splitter
u, ether: water, u
c, hight : swimmer, v

$$
\begin{aligned}
& v=c, u=\text { speed of ether wind } \\
& t_{1}=\frac{2 L}{c} 1 \frac{1}{1-u^{2} / c^{2}} \quad t_{2}=\frac{2 L}{c} \sqrt{\sqrt{1-\frac{u^{2}}{c^{2}}}} \\
& t_{1}-t_{2}=\frac{2 L}{c} 1 \frac{1}{1-u^{2} / c^{2}}-\frac{2 L}{c} \sqrt{\sqrt{1-u^{2} / c^{2}}} \\
& v_{e}=3 \times 10^{4} \mathrm{~m} / \mathrm{s} \quad v_{e} \sim 10^{-4} \quad \text { tanlou Expand.- } \\
& c=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \begin{array}{l}
1-u^{2} / c^{2}
\end{array} 1+\frac{u^{2}}{c^{2}}+\cdots \quad \sqrt{1} \simeq 1+\frac{1}{2} \frac{u^{2}}{c^{2}}+\ldots \\
& \underbrace{t_{2}}_{\text {tit }} \simeq \frac{2 L_{1}}{c}\left(1+\frac{u^{2}}{c^{2}}\right)-\frac{2 L_{2}}{c}\left(1+\frac{1}{2} \frac{u^{2}}{c^{2}}\right) \equiv \Delta t(0)
\end{aligned}
$$

$$
\begin{aligned}
\Delta t(0) & =\frac{2 L_{1}}{c}\left(1+\frac{u^{2}}{c^{2}}\right)-\frac{2 L_{2}}{c}\left(1+\frac{i}{2} \frac{u^{2}}{c^{2}}\right) \\
& =\frac{2 L_{1}}{c}-\frac{2 L_{2}}{c}+2 L_{1} \frac{u^{2}}{c^{3}}-L_{2} \frac{u^{2}}{c^{3}} \\
\Delta t(0) & =\frac{2}{c}\left(L_{1}-L_{2}\right)+\frac{u^{2}}{c^{3}}\left(2 L_{1}-L_{2}\right)=t_{1}(0)-t_{2}(0)
\end{aligned}
$$

now be clever $\prod_{\text {hard to measure precisely. }}$

Rotate
EvERY TATHE.

Beds the calculation

$$
\Delta t(\pi / 2)=t_{1}(\pi / 2)-t_{2}(\pi / 2)
$$

$$
\begin{aligned}
& \Delta t(0)=\frac{2}{c}\left(L_{1}-L_{2}\right)+\frac{u^{2}}{c^{3}}\left(2 L_{1}-L_{2}\right)=t_{1}(0)-t_{2}(0) \\
& \Delta t(\pi / 2)=t_{1}(\pi / 2)-t_{2}(\pi / 2) \\
&=\frac{2}{c}\left(L_{1}-L_{2}\right)+\frac{u^{2}}{c^{3}}\left(L_{1}-2 L_{2}\right) \\
& \begin{aligned}
& \Delta T=\Delta t(0)-\Delta t(\pi / 2) \\
&=\frac{2}{c}\left(L_{1}-L_{2}\right)+\frac{u^{2}}{c^{3}}\left(2 L_{1}-L_{2}\right)-\frac{2}{c}\left(L_{1}-L_{2}\right)-\frac{u^{2}}{c^{3}}\left(L_{1}-2 L_{2}\right) \\
&=\frac{u^{2}}{c^{3}}\left(2 L_{1}-L_{1}-L_{2}+2 L_{2}\right) \\
& \Delta T=\frac{u^{2}}{c^{3}}\left(L_{1}+L_{2}\right) \\
& \Delta \delta \leftarrow \frac{\delta}{\Delta T} \\
& \Delta T
\end{aligned}
\end{aligned}
$$

