1. Special Relativity, 4

 lecture 5, September 8, 2017
housekeeping

remember to check the course page:

chipbrock.org

and sign up for the feedburner reminders
testing, testing:
someone please go to the syllabus and create a fake pdf according to the instructions and then try to upload it to the dropbox in the D2L site. Let me know friday. Okay?
someone did and it worked for us
Homework workshop is Tuesday
your homework "attempts" due midnight Monday night into D2L

Postulates of Special Relativity

1. All laws of physics - mechanical and electromagnetic are identical in co-moving inertial frames.
taking Galileo seriously, and then adding Maxwell
called "The Principle of Relativity"
2. The speed of light is the same for all inertial observers.
taking Maxwell seriously...that "c" in M.E. is a constant.
"The introduction of a "Iuminiferous ether" will prove to be superfluous inasmuch as the view here to be developed will not require an "absolutely stationary space" provided with special properties, nor assign a velocity-vector to a point of the empty space in which electromagnetic processes take place."

Galilean Transformations \rightarrow "Lorentz Transformations"
E's derivation

IN (5):

after time E

$$
\begin{aligned}
& r=c t \\
& c_{t}=\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

$$
c^{2} t^{2}=x^{2}+4^{2}
$$

$$
x^{2}+y^{2}-c t^{2}=0
$$

©

$w(5)$

$$
x^{\prime 2}+y^{\prime 2}-\left(c t^{\prime}\right)^{2}=0
$$

also
How to connect them?

Try a G.T.:

$$
\begin{aligned}
& x^{\prime}=x-u t \\
& t^{\prime}=t
\end{aligned}
$$

$$
\begin{aligned}
& x^{\prime 2}+y^{\prime 2}-\left(c t^{\prime}\right)^{2}=0 \\
& (x-u t)^{2}+y^{2}-(c t)^{2}=0 \\
& x^{2}+\underbrace{(u t)^{2}-2 x u t}_{\text {spoils inuaviauce }}+y^{2}-(c t)^{2}=0
\end{aligned}
$$

E: search fo a linear transformation that presences Postulate $\#_{2}$

$$
\begin{aligned}
& x^{\prime}=\alpha x+4 t \\
& t^{\prime}=\epsilon x+8 t
\end{aligned}
$$

$$
\begin{aligned}
& x^{\prime}=\alpha x+4 t \\
& t^{\prime}=\epsilon x+8 t
\end{aligned}
$$

When

$$
\begin{aligned}
& x^{\prime}=0 \\
& x=u t
\end{aligned}
$$

So:

$$
\begin{aligned}
x^{\prime}=0 & =\alpha u t+y t \\
y & =-\alpha u
\end{aligned}
$$

$$
x^{\prime}=\alpha x-\alpha u t=\alpha(x-u t)
$$

from

$$
x^{\prime 2}+y^{\prime 2}-\left(c t^{\prime}\right)^{2}=0
$$

$$
\uparrow
$$

$$
t^{\prime}=\epsilon x+\gamma t
$$

$$
\alpha^{2}(x-u t)^{2}-c^{2}(\epsilon x+\gamma t)^{2}=0
$$

$$
\begin{aligned}
& \alpha^{2} x^{2}+\alpha^{2} u^{2} t^{2}-2 \alpha^{2} x u t-c^{2} \epsilon^{2} x^{2}-c^{2} \gamma^{2} t^{2}-2 c^{2} \epsilon x \gamma t=0 \\
& x^{2}\left(\alpha^{2}-c^{2} \epsilon^{2}\right)-t^{2}\left(-\alpha^{2} u^{2}+c^{2} \gamma^{2}\right)-2 \alpha^{2} x u t-2 c^{2} \epsilon x \gamma t=0
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}\left(\alpha^{2}-c^{2} \epsilon^{2}\right)-t^{2}\left(-\alpha^{2} u^{2}+c^{2} \gamma^{2}\right)-2 \alpha^{2} x u t-2 c^{2} \epsilon x \gamma t=0 \\
& \text { cowpou wion } \quad x^{2}+y^{2}-(c t)^{2}=0
\end{aligned}
$$

cowpon wion $\quad \underline{x}^{2}+y^{2}-(c \underline{t})^{2}=0$

$$
\begin{aligned}
& \left.\begin{array}{l}
\alpha^{2}-c^{2} \epsilon^{2}=1 \\
c^{2} \gamma^{2}-\alpha^{2} u^{2}=c^{2} \\
\alpha^{2} u+c^{2} \epsilon \gamma=0
\end{array}\right\rangle \quad \text { solve : } \\
& \text { so we eud up with. }
\end{aligned}
$$

$$
\begin{aligned}
x^{\prime} & =\gamma(x-u t) \\
t^{\prime} & =\gamma\left(t-\frac{u x}{c^{2}}\right) \\
\gamma & =\frac{1}{\sqrt{1}} \beta^{2}
\end{aligned}
$$

Loventz
Tvansformations

Why? Because Lorentz worked backwards from Maxwell's Equations:
Q. What transformations on $x \geqslant t$ world leave Max well's Equations Invariant?
A. $\quad x^{\prime}=\gamma(x-u t)$

1895 maned lm Poincavé 1904

$$
t^{\prime}=\gamma\left(t-\frac{u x}{c^{2}}\right)
$$

\rightarrow how about the other way? "inverse transform"?

$$
u \rightarrow u^{\prime}
$$

${ }^{\prime} \rightarrow$ nat'

remember?

back to the airport

so the original problems are solved by:
the Lorentz transformations in x and t actually mix electric and magnetic fields
SO

A magnetic field in one frame
is a mixture of magnetic and electric fields in another frame
An electric field in one frame
is a mixture of electric and magnetic fields in another frame

E and B are two

manifestations of one thing:
the Electromagnetic Field
is a mixture of magnetic and electric fields in another frame An electric field in one frame
is a mixture of electric and magnetic fields in another frame

remember:

more simple questions
how about a charge next to a current?

These situations differ only in the reference frame..
But, the physical effect - force or no force - is different!
more simple questions
how about a charge next to a current?

remember?

but there should

Situation \#2 have been a force!
B $\otimes{ }^{Q} \oplus$ no velocity, no force

and the coil?

yup. right observation all along.

Electric and magnetic fields, depending on the relative frames

the punch line.
Maxwell's Equations were good all along.

Levailn Contraction redux

In (5) $L_{0}=x_{2}^{\prime}-x_{1}^{\prime}$ fixed
what about (S)?
trichn.. thinh about tiwes fn length weaserewent

1) (stich sitfing still \Rightarrow

\Rightarrow Same leangth.

$$
x_{2}^{\prime}-x_{1}^{\prime}=L_{0}
$$

2) (5) watkling (5) go bu... \uparrow proper

meane \uparrow weasue $\}$ different times? wroug legth. (S) must make L @ $t_{2}=t_{1}=0$ sample
(5)

x_{1}	x_{2}

$$
\begin{aligned}
& L=x_{2}-x_{1} \quad \text { e } t_{1}=t_{2}=0 \\
& L=\gamma\left(x_{2}^{\prime}-u t_{2}^{\prime}\right)-\gamma\left(x_{1}^{\prime}-u t_{1}^{\prime}\right) \\
& L=\gamma\left[x_{2}^{\prime}-x_{1}^{\prime}-u t_{2}^{\prime}+u t_{1}^{\prime}\right]
\end{aligned}
$$

but also:

$$
\begin{array}{ll}
t_{2}=\gamma\left(t_{2}^{\prime}-\frac{u}{c^{2}} x_{2}^{\prime}\right)=0 \Rightarrow t_{2}^{\prime}=\frac{u}{c^{2}} x_{2}^{\prime} \\
t_{1}=\gamma\left(t_{1}^{\prime}-\frac{u}{c^{2}} x_{1}^{\prime}\right)=0 & t_{1}^{\prime}=\frac{u}{c^{2}} x_{1}^{\prime}
\end{array}
$$

$$
L=\gamma\left[x_{2}^{\prime}-x_{1}^{\prime}-\frac{u^{2}}{c^{2}} x_{2}^{\prime}+\frac{u^{2}}{c^{2}} x_{1}^{\prime}\right]
$$

$$
L=\gamma\left[\left(x_{2}^{\prime}-x_{1}^{\prime}\right)\left(1-\frac{u^{2}}{c^{2}}\right)\right]^{c^{2}}=\frac{1}{\sqrt{1-u^{2} / c^{2}}}\left[1-\frac{u^{2}}{c^{2}}\right]\left(x_{2}^{\prime}-x_{1}^{\prime}\right)
$$

$$
L=\sqrt{1-u^{2} / c^{2}} L_{0}
$$

$L=\frac{L_{0}}{\gamma} \Rightarrow L$ measures stich to be less than L_{0} what does S^{\prime} see if stich n in?

TRANSFORMATION OF VELOCITIES
the sidewall evolves
(5)

3 velocities qoingon here

In G.T.: what you expect $v^{\prime}=v-u$

$$
\begin{aligned}
& \text { speed of } \\
& \text { something in (} 5 \text {) }
\end{aligned}\left(\begin{array}{l}
\uparrow \text { speed of (S) relativecto (S) } \\
\text { speed of something } \\
\text { in (S) }
\end{array}\right.
$$

But now we do L.T.

$$
\begin{aligned}
& x^{\prime}=\gamma(x-u t) \\
& \frac{d x^{\prime}}{d t}=\gamma\left(\frac{d x}{d t}-u \frac{d t}{d t}-\frac{d u}{d t} t\right)=\gamma\left(\frac{d x}{d t}-u\right)
\end{aligned}
$$

but $t^{\prime}=\gamma\left(t-\frac{\beta}{c} x\right)$

$$
\beta=\frac{u}{c}
$$

$$
\begin{aligned}
& \frac{d t^{\prime}}{d t}=\gamma\left(1-\frac{\beta}{c} v\right)<! \\
& \frac{d x^{\prime}}{d t^{\prime}}=v^{\prime}=\frac{d x^{\prime}}{d t} \frac{d t}{d t^{\prime}}=\frac{\gamma(v-u)}{\gamma\left(1-\frac{\beta}{c} v\right)}
\end{aligned}
$$

$$
v^{\prime}=\frac{v-u}{1-\frac{\beta}{c} v}
$$

Relativistic Velocity Transformation

But wait... there's more v's transverse to u?
then transform also $\rightarrow t \frac{1}{4} t^{\prime}$

$$
\begin{aligned}
v_{x}= & \frac{v_{x}^{\prime}+u}{1+\frac{\beta}{c} v_{x}^{\prime}} \\
v_{y}= & \frac{v_{y}^{\prime}}{\gamma\left[1+\frac{\beta}{c} v_{x}^{\prime}\right]} \\
v_{z}= & \frac{v_{z}^{\prime}}{\gamma\left[1+\frac{\beta}{c} v_{x}^{\prime}\right]}
\end{aligned}
$$

$$
v^{\prime}=\frac{v-u}{1-\frac{\beta}{c} v} \quad \xi^{\prime} \quad v=\frac{v^{\prime}+u}{1+\frac{\beta}{c} v^{\prime}}
$$

extremes of: $\quad v=\frac{v^{\prime}+u}{1+\frac{\beta}{c} v^{\prime}}$

1) uverysman $\beta=u / c$ so $\beta \rightarrow 0 \Rightarrow v=v^{\prime}+u$ G.T.
2) v vens smale $\frac{\beta}{c} v^{\prime}=\frac{u}{c^{2}} v^{\prime}$ so $\frac{v^{\prime}}{c^{\prime}} \rightarrow 0 \Rightarrow v=v^{\prime}+u$ G.T.
3) $v^{\prime}=c$ a light beam in (s)

$$
\begin{aligned}
& u=\frac{c+u}{1+\frac{\beta}{c} c} \\
& C 1+\beta=1+\frac{u}{c}
\end{aligned}
$$

Mass is complicated.
\rightarrow not willing to part with mowentum consenation

A
(5)

after lots of practice:
identical

- each thews their A A.B ban of one another
- they collide elastically ia vecoil

$|v|=\left|v^{\prime}\right| \quad$ frame $\pm \beta=\frac{ \pm u}{c}$
in (5) caloulate (5) quantities

$$
v_{y}(B)=\frac{v_{y}^{\prime}(B)}{\gamma\left(1+\frac{u v_{x}^{\prime}(B)}{c^{2}}\right)}
$$

$$
v_{y}=\frac{v_{y}^{\prime}}{\gamma\left[1+\frac{\beta}{c} v_{x}^{\prime}\right]}
$$

$$
v_{x}^{\prime}(B)=0
$$

$v_{y}^{\prime}(B)=v^{\prime}$

$$
v_{y}(B)=\frac{v^{\prime}}{\gamma}
$$

MOMENTUM CONSERUATION! \Rightarrow aloug y axis

$$
\begin{gathered}
\underbrace{\sum P_{y} \text { (befne) }}_{\bar{n} \text { S }}=\sum \bar{i} \text { (S) } \\
m_{A} v-m_{B} v_{y}(B)=-m_{A} v+m_{B} v_{y}(B) \\
m_{A} v-m_{B} \frac{v^{\prime}}{\gamma}=-m_{A} v+m_{B} \frac{v}{\gamma} \\
|v|=\left|v^{\prime}\right| \equiv v \quad 2 m_{A} v=2 m_{B} \frac{v}{\gamma} \\
m_{B}=\gamma m_{A}
\end{gathered}
$$

MOMENTUM CONSERVATION! \Rightarrow along y

$$
\begin{equation*}
\underbrace{\sum P_{y}(\text { bette })}=\sum P_{y}(\text { after }) \tag{n}
\end{equation*}
$$

\bar{n} (5

$$
\begin{aligned}
& m_{A} v-m_{B} v_{y}(B)=-m_{A} v+m_{B} v_{y}(B) \\
& m_{A} v-m_{B} \frac{v^{\prime}}{\gamma}=-m_{A} v+m_{B} \frac{v}{\gamma} \\
& |v|=\left|v^{\prime}\right| \equiv v \quad 2 m_{A} v=2 m_{B} \frac{v}{\gamma} \\
& \quad m_{B}=\gamma m_{A} \quad
\end{aligned}
$$

if u is vanishingly small...

$$
m_{B}=m_{A} \rightarrow=\text { "m} m_{0} \text { "rest mass" }
$$

but as u increases $\quad m_{B}>m_{A}$, $m_{B}>m_{0}$

$$
m(u)=\frac{m_{0}}{\sqrt{1-u^{2} / c^{2}}} \quad \text { called "relativistic moss" }
$$

$*$ ahem *
continuing

$$
\vec{P}=m \vec{u}
$$

$\vec{p}=m_{0} \gamma \vec{u} \quad$ relativistic momentum
Transtoma
Force

$$
\begin{aligned}
\vec{F} & =\frac{d}{d t} \vec{P} \\
& =m \frac{d \vec{u}}{d t}+\vec{u} \frac{d m}{d t} \\
& =m \vec{a}+\vec{u} \frac{d m}{d t} \\
\vec{F} & =m_{0} \gamma\left[\frac{d \vec{u}}{d t}+\frac{u(u)}{d t}=\frac{m_{0}}{\sqrt{1-m^{2} / c^{2}}}\right. \\
& \frac{d u}{c^{2}-u^{2}} \vec{u}
\end{aligned}
$$

r differentiate

$$
\frac{d}{d t}
$$

ugh. worse. if \vec{u} is not along \vec{F} ? really ugly.

