1. Special Relativity, 6

lecture 7, September 13, 2017

housekeeping

remember to check the course page:

chipbrock.org

and sign up for the feedburner reminders
Homework due Friday, remember?
I'll adjust thermo homework if necessary
for my verbosity

suppose we have a bound system

 What holds the electron to the proton?
Hydrogen Atom

 Last week: the electrostatic force, or the Electric field, right?
Remember from Chemistry:

What's it take to ionize* Hydrogen?

You must supply 13.6 eV
*make the electron free of the proton's influence

energy

diagram
for H

The mass of a hydrogen atom is LESS than the sum of $m_{p}+m_{e}$
No negative binding energy...just a "mass deficit" in the attraction of the P and e.
The energy is in the field.

a hydrogen atom, take 2

weighs less than the components of a hydrogen atom

so it can't fall apart into its components

where is that "missing mass"?
in the energy of the Electric Field,

the '‘mass deficit" in nuclei

is observable and works for good and for ill.

$\overline{A C}$ are simultane ous in (s) but not in (S)
$\overline{D B}$ are sinuult aneons in (5) but not n S

Enevan Conservation in Relativity

K_{A}	K_{B}	
\equiv	O_{A}	\rightarrow
\equiv	K_{A}^{\prime}	O_{B}^{\prime}
O_{B}^{\prime}		

$$
\begin{aligned}
& \text { ENERGY BEFORE }=\text { ENERGY AFTER } \\
& K_{A}+m_{A} C^{2}+K_{B}+m_{B C}^{2}=K_{A}^{\prime}+m_{A} C^{2}+K_{B}^{\prime}+m_{B} c^{2}
\end{aligned}
$$

"Decay"
cancel, so a hidden relativity process

- $\omega^{1} B$
how abort energy now?

$$
\rightarrow \quad=\text { © }
$$

A

$$
O \equiv D
$$

$$
m_{A} c^{2}=\dot{k}_{B}+m_{B} c^{2}+\dot{k}_{C}+m_{c} c^{2}+k_{D}+m_{D} c^{2}
$$

$$
\left(m_{A} c^{2}-m_{B} c^{2}-m_{c} c^{2}-m_{D} c^{2}\right)=k_{B}+k_{C}+k_{D}
$$

wass-eneray difference $=$ energy of motion

Units are no fun
"Electron Volts"
$m_{p} \simeq 10^{-27} \mathrm{kq} . \Rightarrow$ mistakes waiting to happen

$$
9_{e}=-1.6 \times 10^{-19} c
$$

accelerated over 1 Volt \rightarrow

$$
E=k=q v
$$

from work done by \vec{E} : $\quad E=\left(1.6 \times 10^{-19} c\right)(1 \mathrm{~J} / \mathrm{c})=1.6 \times 10^{-19} \mathrm{~J}$

$$
\equiv 1 \mathrm{eV}
$$

Furthermore, wasses:

$$
{ }^{n e V} / c^{2}
$$

rest energies

$$
\text { " } \mathrm{eV} \quad \begin{aligned}
m_{e} & =9.1 \times 10^{-31} \mathrm{hq} \\
E_{0} & =m_{e} c^{2}=\left(9.1 \times 10^{-31}\right)\left(3 \times 10^{8}\right)^{2}\left(\frac{1 \mathrm{eV}}{1.6 \times 10^{-19} \mathrm{~J}}\right) \\
E_{0}(e) & =511,900 \mathrm{eV} \\
& =0.511 \times 10^{6} \mathrm{eV}=0.511 \mathrm{MeV}
\end{aligned}
$$

so $\quad m_{0}(e)=\frac{E_{0}}{c^{2}}=m_{0}(e)=0.511 \frac{\mathrm{meV}}{c^{2}} \quad$ MMe over e ${ }^{2}$ "

A Little Doppler
 light
emits Nares © frequency f

$$
\begin{aligned}
\lambda^{\prime}=\frac{D^{\prime}}{N} & =\frac{u \Delta t^{\prime}+c \Delta t^{\prime}}{N} \lessdot \text { same in } s!s^{\prime} \\
\lambda^{\prime} & =\frac{u \Delta t^{\prime}+c \Delta t^{\prime}}{f \Delta t_{0}} \Rightarrow c_{f^{\prime}}=\frac{\Delta t^{\prime}(u+c)}{f \Delta t_{0}}
\end{aligned}
$$

in $s^{\prime}: f \lambda=c \Rightarrow f^{\prime}=\frac{c}{\lambda^{\prime}} \quad f^{\prime}=c \frac{f \Delta t_{0}}{\Delta t^{\prime}(u+c)}=f \frac{\Delta t_{0}}{\Delta t^{\prime}} \frac{1}{1+u / c}$

$$
D=\text { total distance }=N \lambda
$$

$$
\Delta t_{0}=N T=\frac{N}{f}
$$

$$
\begin{aligned}
& f^{\prime}=c \frac{f \Delta t_{0}}{\Delta t^{\prime}(u+c)}=f \frac{\Delta t_{0}}{\Delta t^{\prime}} \frac{1}{1+u / c} \\
& f^{\prime}=\frac{f \sqrt{1-u^{2} / c^{2}}}{1+u / c}=\sqrt{1-u^{2} / c^{2}} \\
& \\
& f^{\prime}=f \sqrt{\frac{1-\beta}{1+\beta}} \quad \text { aside: } \quad(1-\beta)(1+\beta)=1+\beta-\beta-\beta^{2} \\
&
\end{aligned}
$$

Relativistiz Dopplev shift in "medium"
Diffevent from "regutar" Dopmler shiff: $f^{\prime}=f\binom{" c " \pm v_{s}}{" c " \pm v_{s}}$

$$
f^{\prime}=f \sqrt{\frac{1-\beta}{1+\beta}} \Rightarrow f^{\prime}>f \quad \text { ob } \underbrace{\lambda^{\prime}<\lambda}_{\text {actual }}
$$

example:
Galaxy moving away from earth such that $\lambda(H)=434 \mathrm{~nm}$ areas to be at $\lambda(H)=600 \mathrm{~nm} \rightarrow$ what's u ?

$$
\begin{aligned}
& f=\frac{c}{\lambda} \text { 六 } f^{\prime}=\frac{c}{\lambda^{\prime}} \\
& \frac{c}{\lambda^{\prime}}=\frac{c}{\lambda} \sqrt{\frac{1-\beta}{1+\beta}}=\frac{c}{600}=\frac{c}{434} \sqrt{\frac{1-\beta}{1+\beta}} \\
& \vdots \\
& \beta=0.31
\end{aligned}
$$

Binding Energy
\rightarrow "hinds of energy"? 2 hinds: energy of mass every of motion.

fivecracher?
sure where chemical energy might be counted

$$
\begin{aligned}
& \vec{P}_{1}=-\vec{P}_{2} \\
& M c^{2}=E_{1}+E_{2}=2 E \text { where } E=m_{0} c^{2}=K+m_{0} c^{2} \\
M c^{2}= & 2 K+2 m_{0} c^{2} \\
2 K= & M c^{2}-2 m_{0} c^{2} \\
2 K= & c^{2}(M-2 m)
\end{aligned}
$$

old idea of conservation of mass? nope

J
If a system is to stay together... say 2 components M $\frac{1}{2} m$

$$
E(\text { system })<M_{0} c^{2}+m_{0} c^{2}
$$

Previously... Like in Chemistry? $\rightarrow \quad E($ system $)=M, c^{2}+m_{0} c^{2}-B$
binding every.
\Rightarrow veal to add to separate thous.

In Relativity... $E_{s}($ system $)=M($ system $) c^{2}$

$$
M_{s}(\text { system })=M_{0}+m_{0}-B / c^{2}<m_{0}+m_{0}
$$

A kydnozer atom:

$$
M(H)<M_{0}(\text { proton })+m_{0} \text { (electron) }
$$

so it stans together... "mass deficit" wot "binding evens"
one step... over the edqe.
\checkmark sustom m_{s}

B

A

Classically: $\quad 2\left(\frac{1}{2} M v^{2}\right)=P($ spirina $)$
Relativistically:

$$
\begin{gathered}
2 M_{0} c^{2}+2 M_{0} c^{2}(\gamma-1)+m_{s} c^{2}=2 M_{0} c^{2}+P+m_{s} c^{2} \\
2 M_{0} c^{2}(\gamma-1)=P=E=\delta m c^{2} \\
2 M_{0} c^{2}+2 M_{0} c^{2}(\gamma-1)+m_{s} c^{2}=2 M_{0} c^{2}+\delta m c^{2}+m_{s} c^{2} \\
K \\
\underbrace{k+m_{s} c^{2}=\delta m_{s} c^{2}+m_{s} c^{2}=\left(\delta m+m_{s}\right) c^{2}}_{\text {sprinq qets neariev...no } n_{0} p^{\prime \prime}}
\end{gathered}
$$

E's $4^{\text {th }}$ paper: "Does the Inertia of a Body Depend on Its Energy Content" yup.

Hydrogen:

$$
\sum_{0 m_{e}}^{0} m_{p} \text { Electric Field } \quad M(H)=M(p)+m(e)-\frac{E(\text { field })}{c^{2}}
$$

weighs less mass in field than a piston + an electron. δM_{E}

Raise a mass away from earth? \rightarrow it gets hewied... ho "p" Cork an ears in the mining? \rightarrow it acts heavier Heat a gas? $\rightarrow 1+$ gets heavier

Chavaed Dion Decay:

$$
\pi^{ \pm} \rightarrow \mu^{ \pm}+v_{\mu}
$$

pion \rightarrow moon + neutrino
Facts $\quad m_{\pi}=139.57 \mathrm{mev} / \mathrm{c}^{2}$

$$
\begin{aligned}
& m_{\mu}=105.45 \mathrm{Me} / \mathrm{c}^{2} \\
& \tau_{\mu}=2.2 \times 10^{-6} \mathrm{~s} \\
& m_{\nu} \simeq 0 \\
& \vec{p}_{\pi}=0 \Rightarrow \text { at rest }
\end{aligned}
$$

a) What is momentum of μ ?
b) on average how for does μ travel before if decays?
a)

cruserve eneary:
couserve mornantum:

$$
\begin{aligned}
\vec{P}_{\#} & =\vec{P}_{\mu}+\vec{P}_{\nu} \\
& =0 \\
\vec{P}_{\mu} & =-\vec{P}_{v}
\end{aligned}
$$

$$
\begin{gathered}
E_{\pi}=E_{\mu}+E_{\nu} \\
m_{\pi} c^{2}+K_{\pi}=\underbrace{m_{\mu} c^{2}+k_{\mu}}_{0}+m_{\uparrow}^{E_{\mu}^{2}} c^{2}+k_{\nu}
\end{gathered}
$$

$$
E^{2}=p^{2} c^{2}+m^{2} c^{4}: \quad E_{\nu}^{2}=p_{\nu}^{2} c^{2} \quad E_{\mu}^{2}=p_{\mu}^{2} c^{2}+m_{\mu}^{2} c^{4}
$$

but $\left|P_{\mu}\right|=\left|P_{\nu}\right| \equiv P$

$$
E_{v}=p c \quad E_{\mu}=\sqrt{p^{2} c^{2}+m_{\mu}^{2} c^{4}}
$$

$$
\begin{gathered}
E_{\pi}=E_{\mu}+E_{\nu} \\
m_{\pi} c^{2}+K_{\uparrow}^{K_{\pi}}=\underbrace{m_{\mu} c^{2}+K_{\mu}}_{0}+m_{\uparrow}^{E_{\mu}^{2}} c^{2}+K_{\nu}
\end{gathered}
$$

$$
m_{\pi} c^{2}=\sqrt{p^{2} c^{2}+m_{\mu}^{2} c^{4}}+p c \quad \rightarrow \text { solve for } p c
$$

Sodution

$$
\begin{aligned}
& A=\sqrt{x^{2}+B^{2}}+x \\
& \sqrt{x^{2}+B^{2}}=A-x \\
& A^{2}+B^{2}=(A-x)^{2}=A^{2}-2 A x+x^{2} \\
& B^{2}=A^{2}-2 A x \\
& 2 A x=A^{2}-B^{2} \\
& x=\frac{A^{2}-B^{2}}{2 A}=\frac{\left(m_{\pi} c^{2}\right)^{2}-\left(m \mu c^{2}\right)^{2}}{2\left(m_{\pi} c^{2}\right)}=\frac{(139.6)^{2}-(105)^{2}}{2(139.6)} \\
& x=30.3 \\
& P C=30.3 \mathrm{MeV} \\
& P=30.3 \mathrm{MeV} / \mathrm{C}
\end{aligned}
$$

b)

"classically" $d=v \tau \quad \rightarrow$ let it be as fast as coneeivatile $=\subseteq$

$$
\begin{aligned}
& d=c \tau=\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(2.2 \times 10^{-6} \mathrm{~s}\right) \\
& d=660 \mathrm{~m}
\end{aligned}
$$

AN ASIDE
we are bombarded by μ 's which have lived thusugh the entire atmosphere $\sim 50,000 \mathrm{~m}$ © $\sim 1 \mu / \mathrm{cm}^{2} / \mathrm{min}$
muon decay
called the "lifetime"
time for a decay to reduce
$N(t)=N(0) e^{-t / \tau}$ a same size by factor

t seconds

In μ rest frame -

$$
\frac{1}{e}=\frac{1}{2.72}=0.368
$$

(different slightly from "half-life"... stay tuned)
a lihecihrod of decay $\tau=2.2 \times 10^{-6} s=2.2 \mu s$

On earth: wre see the μ 's "cloch" dilated.
 γ is alout I

So for us... it travels - on average -

$$
\underbrace{d=\underbrace{u^{\prime} \tau}_{\mu} 650 \mathrm{~m}}_{\text {us }}=7(650 \mathrm{~m})=4600 \mathrm{~m}
$$

μ see's earth's atmosphere rushing towand if ε : leugth - wout racted.

$$
d_{\mu}=\frac{1}{\gamma} d_{e}
$$

DONE wITH ASIDE \rightarrow our original π decay:
Bach to b)

$$
\begin{aligned}
& d=\gamma u \tau \quad p=\gamma m_{\mu} u \\
& d=\frac{P}{m_{\mu} u} u \tau \frac{c^{2}}{c^{2}} \\
& d=\frac{(p c)(c \tau)}{m_{\mu} c^{2}}=\frac{(30, \mu \mathrm{~V})\left(3 \times 10^{8}\right)\left(2.2 \times 10^{-6}\right)}{(105.45 \mathrm{mcV})} \\
& d \cong 185 \mathrm{~m}
\end{aligned}
$$

Handy voles of thumb:

$$
\begin{aligned}
E=\gamma m c^{2} & E^{2}=\frac{1}{m^{2} c^{4}} \\
\gamma=\frac{E}{m c^{2}} & \left(1-\beta^{2}\right) \\
& \Rightarrow \beta^{2}=\frac{P^{2} c^{2}}{E^{2}} \\
& \beta=\frac{P c}{E}
\end{aligned}
$$

