1. Special Relativity, 6 lecture 7, September 13, 2017

housekeeping

remember to check the course page:

chipbrock.org

and sign up for the feedburner reminders Homework due Friday, remember? I'll adjust thermo homework if necessary

for my verbosity

suppose we have a bound system

What holds the electron to the proton?

Hydrogen Atom

р

Η

Last week:

e

the electrostatic force, or the Electric field, right?

Remember from Chemistry:

What's it take to ionize* Hydrogen?

You must supply 13.6 eV

*make the electron free of the proton's influence

energy diagram for H

The mass of a hydrogen atom is LESS than the sum of $m_p + m_e$ No negative binding energy...just a "mass deficit" in the attraction of the P and e. The energy is in the field.

a hydrogen atom, take 2

weighs less than the components of a hydrogen atom

so it can't fall apart into its components

where is that "missing mass"?

in the energy of the Electric Field,

the "mass deficit" in nuclei

is observable and works for good and for ill.

Units are no fin

$$m_{p} \approx 10^{-27} \text{ kg.} \Rightarrow \text{ unist dies waiting to} \\ \text{hannen}$$
"Electron Volts"

$$= 1 \text{ Volt}$$

$$= 1 \text{ Volt}$$

$$e_{p} = -1.6 \times 10^{-19} \text{ C}$$

$$accelerated over 1 \text{ Volt} \rightarrow$$

$$E = K = 9V$$
from work done by \vec{E} : $E = (1.6 \times 10^{-19} \text{ c})(1.5/c) = 1.6 \times 10^{-19} \text{ J}$

$$= 1 \text{ eV}$$
For thermore, messes:

$$a \frac{\text{eV}}{\text{c}^{2}}$$

$$m_{e} = 9.1 \times 10^{-31} \text{ kg}$$

$$= 0.511 \times 10^{6} \text{ eV} = 0.511 \text{ MeV}$$

$$= 0.511 \text{ MeV} \text{ areve}^{2}$$

 $f' = c \quad \frac{f \Delta t_0}{\Delta t' (n+c)} = f \quad \frac{\Delta t_0}{\Delta t'} \quad \frac{1}{1 + u/c}$ $\frac{1}{x} = \sqrt{1 - \frac{v^2}{2}}$ f'= f VI- ~22 1+ 4/c aside: (1-B)(1+B) = 1+B-B-B = 1-132 Au $\sqrt{(1-\beta)(1+\beta)} = \sqrt{1-\beta^2}$ $f' = f \sqrt{\frac{1-\beta}{1+\beta}}$ 1+B L+B Different from "regular" Doppler Ship: $f' = f\left(\frac{"C'' \pm V_{5}}{......}\right)$

$$f' = f \sqrt{\frac{1-B}{1+\beta}} \implies f' > f \quad ov \quad \lambda' < \lambda$$

$$a "ved shift"$$
example.
Galaxy moving away from batth such that $\lambda(H) = 434 \text{ nm}$
appears to be at $\lambda(H) = 600 \text{ nm} - e$ what's u ?

$$f = \frac{c}{\lambda} \quad \frac{1-B}{\lambda} = \frac{c}{\lambda}$$

$$f = \frac{c}{\lambda} \quad \sqrt{\frac{1-B}{1+\beta}} = \frac{c}{600} = \frac{c}{434} \sqrt{\frac{1-B}{1+\beta}}$$

$$\frac{c}{B} = 0.31$$

Binding Energy -> " hinds of energy" Z Z hinds: energy of mass energy of motion. frecracher? sure where chemical energy night be counted $\vec{P}_1 = -\vec{P}_2$ where E = mgc² = K + Moc² $Mc^2 = E_1 + E_2 = ZE$ $GV K = M_{0}C^{2}(Y-1)$ Mc2 = ZK+ Zmsc2 2K = M2 - 2m,2 $2K = c^2(M - 2m)$ old idea of conservation of mass? uspe

one step... over the edge 1 Susten MS ∽ ~ □→ 777 ← □ M m_s M MM A B Classically: 2 (± Mu2) = P(sping) $2M_{o}c^{2} + 2M_{o}c^{2}(\gamma-1) + m_{s}c^{2} = 2M_{o}c^{2} + P + m_{s}c^{2}$ Relativistically: $2M_{0}c^{2}(8-1) = P = E = Smc^{2}$ $2M_{0}C' + 2M_{0}C'(Y-1) + m_{s}C' = 2M_{0}C' + 8m_{0}C' + m_{s}C'$ $K + m_{s}c^{2} = \delta mc^{2} + m_{s}c^{2} = (\delta m + m_{s})c^{2}$ $\left(\frac{K}{c^2} + m_s\right)c^2 = \left(\delta m + m_s\right)c^2$ spring gets hearter ... no "P"

Characd Thion Decay:
$$Tt^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}$$

 \neg

Facts
$$m_{tf} = 139.57 \text{ MeV}/c^2$$

 $m_{\mu} = 105.45 \text{ MeV}/c^2$
 $C_{\mu} = 2.2 \times 10^6 \text{ s}$
 $m_{V} \simeq 0$
 $\overline{P}_{R} = 0 \Rightarrow \text{ at rest}$

a) what is momentum of p?

$$E_{\pi} = E_{\mu} + E_{\nu}$$

$$m_{\pi}c^{2} + K_{\mu} + m_{\nu}c^{2} + K_{\nu}$$

$$\int_{0}^{1} \sqrt{E_{\nu}^{2}}$$

$$m_{\pi}c^{2} = \sqrt{p^{2}c^{2} + m_{\mu}^{2}c^{4}} + pc \quad -3 \text{ solution for } pc$$

Solution

 $A = \sqrt{x^2 + B^2} + x$ $\sqrt{x^2 + B^2} = A - x$ $A^{2}+B^{2}=(A-x)^{2}=A^{2}-2Ax+x^{2}$ B= A2 - ZAX $2A_{x} = A^2 - B^2$ $X = \frac{A^{2} - B^{2}}{2A} = (m_{\pi}c^{2})^{2} - (m_{\mu}c^{2})^{2} = (139.6)^{2} - (105)^{2}$ $ZA = \frac{2(m_{\pi}c^{2})}{2(m_{\pi}c^{2})} = \frac{2(139.6)^{2}}{2(139.6)}$ x = 30.3PC = 30.3 MeV p = 30.3 MeV/G

called the "lifetime" muon decay -*/2 time for a decay to reduce N(*) = N(0)ea source size by factor $\frac{1}{2} = \frac{1}{2.72} = 0.368$ *p affer #p C t=0 t seconds (different signtly from N(Ł) "half-life" -- stary tined) N(d) 0.368 E 25 35 τ In press frame -a pshelihood of decay T= Z.Zx 10 3 = Z.Zus K

On earth: we see the
$$\mu$$
's "cloch" dilated.
 $T = 8 T_{\mu}$
 y is about T_{μ}
 us
So for $us...$ if travels-on average-
 $d = 8 uT = 7 (450 m) = 4600 m$
 us
 μ see's earth's atmosphere rushing toward if t
length - contracted.
 $d\mu = 1 de$
 T as

Device with ASIDE
$$\rightarrow$$
 our original to decay:
Bach to b)

$$d = Yut \qquad p = Ym_{\mu}n$$

$$d = Put c^{2}$$

$$m_{\mu}u \qquad c^{2}$$

$$d = (\frac{pc}{(ct)}(ct) = \frac{(30, meV)(3xid^{3})(2.2xid^{6})}{(105.45 \text{ MeV})}$$

$$d^{\frac{2}{2}} 185 \text{ m}$$
Hundy roles of thumbs:

$$E = Ymc^{2} \qquad E^{1} = \frac{1}{E^{2}} \qquad m^{2}c^{4}$$

$$y = \frac{E}{mc^{2}} \qquad \Rightarrow \beta^{2} = \frac{p^{2}c^{2}}{E^{2}}$$

$$\beta = \frac{pc}{E}$$