

9. Quantum Statistics, 3

lecture 33, November 14, 2017

housekeeping

 Honors projectInstructions for 3 people are up that was easy
This week, remember:
homework workshop will be tomorrow
homework will be due Friday
lectures will happen M,T,F

today

statistical physics - quantum mechanically

(

Thuee Probakility Distvituctions

$$
\begin{array}{ll}
F_{M B}=\frac{1}{A e^{E / h T}} & \begin{array}{ll}
E(h T \gg 1 & \\
F_{B E}= & F(E) \\
B e^{E / h T}-1
\end{array} \\
F_{F D}=\frac{1}{C e^{E / h T}+1}
\end{array}
$$

Remember what these are:

$$
\begin{array}{r}
n(E) d E=g(E) F_{x}(E) d E \\
\uparrow \\
F_{M B,} F_{B E}, \text { ov } F_{F D}
\end{array}
$$

can determine $A \cdot B, C$ (e^{α} 's $)$ by

$$
\begin{aligned}
& \left(\frac{N}{V}\right)_{B E}=\int_{0}^{\infty} g(E) F_{B E}(E) d E \\
& \left(\frac{N}{V}\right)_{F D}=\int_{0}^{\infty} g(E) F_{F D}(E) d E
\end{aligned}
$$

Fermi Dire Distribution

$$
F_{F D}(E)=\frac{1}{e^{\alpha} e^{E / h T}+1}
$$

typically write $e^{\alpha}=e^{-\varepsilon_{F} / h T}$

$$
\begin{aligned}
& \varepsilon_{F} \equiv \text { "FermitEnerm" } \\
& F_{F D}(E)=\frac{1}{e^{\left(E-\varepsilon_{F}\right) / n T}+1}
\end{aligned}
$$

notice when

$$
\begin{aligned}
& \text { - } E=\varepsilon_{F} \\
& \text { - } E \ll \varepsilon_{F} \\
& \text { - } T \rightarrow 0 \\
& F_{F D}(E)=\frac{1}{1+1}=0.5 \quad F_{P D}(E)=\frac{1}{e^{-\varepsilon_{P} / n T}+1} \sim 1 \\
& \Rightarrow \text { hf } q \text { the states } \\
& \text { have } E>\varepsilon_{F} \\
& \begin{aligned}
& \cdot T \rightarrow 0 \\
& \bar{F}_{F D}(E) \rightarrow 0 E>\varepsilon_{F} \\
& \rightarrow 1 E<\varepsilon_{F}
\end{aligned} \\
& 1 \text { per state, as } \\
& \text { expected. }
\end{aligned}
$$

As temperature increase obowe $T=0$:

A metal.
what's the density of states?

General calculation of density of states - variation on book remember the ware number $h=\frac{2 \pi}{\lambda}=\frac{2 \pi f}{c}$

$$
\text { ME's for harumic, say, } \vec{E}
$$

$$
\vec{E}=\vec{E}\left(x_{1} x_{2} x_{3}\right) e^{\text {int }} \text { lead to the wave equation }
$$

$$
\begin{aligned}
\lambda f & =\frac{\omega}{n} \\
\omega & =\lambda f k \\
\lambda & =\frac{c}{f}, \omega=c h
\end{aligned}
$$

$$
\begin{array}{ll}
\nabla^{2} \vec{E}=\mu_{0} \epsilon_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}} \quad \text { fun just one ainaction, } E_{1} \\
\nabla^{2} E_{1}=-\mu_{0} t_{0} \omega^{2} E_{1} & \\
\nabla^{2} E_{1}=-\mu_{0} \epsilon_{0} c^{2} h_{1}^{2} E_{1} \\
\nabla^{2} E_{1}+h_{1}^{2} E_{1}=0 \quad \rightarrow \quad h^{2}=h_{1}^{2}+h_{2}^{2}+h_{3}^{2}
\end{array}
$$

wi harmonic oscillator - elvin sohtins: $E_{1}=A \sin \left(h_{1} x_{1}\right) \sin \left(h_{2} x_{2}\right) \operatorname{si}\left(h_{3} x_{3}\right)$

Put waves inside a cavity of sides L w) hounday condifins at sides of cavity: $E=0$ at $x_{i}=0$ i $x_{i}=L$

$$
\begin{aligned}
\Rightarrow \quad h_{i} L & =n_{i} \pi \\
n_{i} & =1,2,3 \ldots
\end{aligned}
$$

So: $\quad k^{2}=\frac{\pi^{2}}{L^{2}}\left(n_{1}^{2}+n_{2}^{2}+n_{3}^{2}\right)$
want density of states..
now fn "reallm clessical" electrii field standing wanes

$$
h_{i}=\frac{n_{i} \pi}{L}
$$

h is a "lengtr" in "h-space"
«another ssherical shed

$$
\begin{aligned}
& N_{\text {s.w. }}(h) d h=\frac{4 \pi h^{2} d h}{(\pi / h)^{3}} \times \frac{1}{8} \times 2 \\
& N(h) d h=\frac{V h^{2} d h}{\pi^{2}} \quad \text { owhy octent } \\
& g(h) d h=\frac{h^{2} d h}{\pi^{2}} \quad \text { conuts }
\end{aligned}
$$

Now, electurus...
after all, a metal is a container full of electron wave function which similarly vanish at edges.
\rightarrow your hook oses a 3-d infinite well to calculate $g(E)$ We can use the \vec{E} mode calculation
$\times 2$ fr polainzatim $\longrightarrow x^{2}$ electrum spin
But, h is different... need every:

$$
\begin{aligned}
E=\frac{p^{2}}{2 m_{e}}=\frac{\hbar^{2} h^{2}}{2 m_{e}} \Rightarrow h & =\left(\frac{2 m E}{\hbar^{2}}\right)^{1 / 2} \\
d h & =\frac{1}{2}\left(\frac{2 m}{\hbar^{2}}\right)^{1 / 2} E^{-1 / 2} d E
\end{aligned}
$$

Substitutive:

$$
g(E) d E=\frac{8 \sqrt{2} \pi m^{3 / 2}}{h^{3}} d E
$$

$$
g(E) d E=\frac{8 \sqrt{2} \pi m^{3 / 2}}{h^{3}} E^{1 / 2} d E
$$

finally $\quad n(E) d E=g(E) F_{F D}(E) d E$

$$
n(E) d E=\frac{8 \sqrt{2} \pi m^{3 / 2}}{n^{3}} \frac{E^{1 / 2}}{e^{\left(E-\epsilon_{F}\right) / h T}+1}
$$

C $T=0$, easy
in $T>0$, numerical solution

effect of
PEP.

Example - whet is the Fermi Energy for gold? How fast are conduction elections moving at ϵ_{F} ?

$$
\begin{aligned}
& n(E) d E=\frac{8 \sqrt{2} \pi m^{3 / 2}}{h^{3}} \frac{E^{1 / 2}}{e^{\left(E-\epsilon_{F}\right) / h T}+1} d E \quad \begin{array}{r}
\text { can determine } \epsilon_{F} \text {. at } \\
\text { then } F_{F D}(T=0)=1
\end{array} \\
& r \frac{N}{V}=\int n(E) d E=\frac{8 \sqrt{2} \pi m_{e}^{3 / 2}}{h^{3}} \int_{0}^{\epsilon_{F}} E^{1 / 2} d E=\frac{2}{3} \frac{8 \sqrt{2} \pi m^{3 / 2}}{h^{3}} \epsilon_{F}^{3 / 2} \\
& \text { non- } \quad \text { so } \quad \epsilon_{F}=\frac{h^{2}}{2 m_{e}}\left(\frac{3}{8 \pi}\right)^{2 / 3}\left(\frac{N}{V}\right)^{2 / 3}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\rho(\text { gold })=19.32 \mathrm{~g} / \mathrm{cm}^{3} \\
\text { molar mas }=197 \mathrm{~g} / \text { mol }
\end{array}\right\} \begin{aligned}
& \frac{N}{V}=\left(19.32 \frac{9}{\mathrm{~cm}^{3}}\right)\left(\frac{1}{192 \mathrm{~g} / \mathrm{mol}}\right) N_{A}\left(\mathrm{~mol}^{-1}\right) \\
& \frac{\mathrm{N}}{V}=5.9 \times 10^{28} \text { electrons } / \mathrm{m}^{3}
\end{aligned}
$$

so $\quad G_{*}(0)=8.85 \times 10^{-19} \mathrm{~J}=5.53 \mathrm{eV}$
sneer: $\left.\epsilon_{F}=1 / 2 m v^{2} \Rightarrow v=\left(\frac{2 \epsilon_{F}}{m}\right)^{\eta}=1.39 \times 10^{6} \mathrm{~m} / \mathrm{s}\right) \stackrel{\text { FAST }}{=}$
If a gas of elect cons were heated.- $h T_{F}=\epsilon_{F}, T_{E}=64 h K$! "fermi temp"

Peorle weve coufused...
If electrons weve classical, heat capsicties would be lang

$$
u=N\left(\frac{3}{2} h T\right)=\frac{3}{2} R T
$$

$$
C_{e l}=\frac{\partial U}{\partial T}=3 / 2 R \quad \text { tor lage cmpared to expt }
$$

But: ouln a fow percent of electrus contributc

Bosons
Consider a"gas" y phstagous $\quad n(E) d E=g(E) F_{B E}(E) d E$
need (E) ... we did that! we found $g(h) d h=\frac{h^{2} d h}{\pi^{2}}$
sime $\quad h=\frac{2 \pi f}{c} \quad g(f) d f=\frac{8 \pi f^{2}}{c^{3}} d f$
since $f=E / h \quad g(E) d E=\frac{8 \pi E^{2}}{(h c)^{3}} d E$
number with E between E \& $E+d E$
Now:
energ darsity: $u(E) d E=E n(E) d E=E g(E) F_{B E}(E) d E$

$$
\begin{array}{ll}
\text { ov } & u(E) d E=\frac{8 \pi}{(h c)^{3}} \frac{E^{3} d E}{e^{E / h T}-1} \\
u(f) d f=\frac{8 \pi}{c^{3}} \frac{f^{3}}{e^{h f / h T}-1} d f
\end{array}
$$

plancḱs formula Einstein's argumant, almest.

MORE BOSONS
Einstein guessed that a costal lattice must vibrate

\rightarrow these vibrations wowed be quantized according to S.H.O.

Like actual quanta twat exist inside lattice
\rightarrow "Quasi - Particles"
For 1d oscinator I 2 dot: KE $\ddagger P E$, each contributing $1 / 2 h T$
For 3 ! oscillator: $3 \cdot 2 \cdot \frac{1}{2} h T=3 h T$
energ per mile: $\quad E=3 N_{A} N T=3 R T$
Remenker $C=\frac{\partial E}{\partial T}=3 R$ constant... but experiment saw srweting different

Prohahility of having quasi-pwaticks of oscillation is $F_{\text {BE }}$

So exagm per mole is from $E=3 N_{A} h T \Rightarrow 3 N_{A} \hbar \omega \times$ proth of hawing osillction.

$$
E=3 N_{A} \hbar \omega \frac{1}{e^{E / h T}-1}=3 N_{A} \hbar \omega \frac{1}{e^{\hbar U / M T}-1}
$$

Now

$$
\begin{aligned}
& C_{V}=\frac{\partial E}{\partial T}=3 N_{A} \hbar \omega \frac{\left(e^{\hbar \omega / h \tau}\right)\left(\hbar \omega / h T^{2}\right)}{\left(e^{\hbar \omega / \omega T}-1\right)^{2}} \\
&=[3 R]\left(\frac{\hbar \omega}{h T}\right)^{2} \frac{e^{\hbar \omega / h T}}{\left(e^{\hbar \omega / h T}-1\right)^{2}} \\
& C_{V}
\end{aligned}
$$

Quasit pactickes are phonons

Still MORE BOSONS Helium
Consider now a gas of bosons \rightarrow not $\operatorname{spin} 1$, so 1 do.
$g(E) d E=\frac{8 \sqrt{2} \pi m^{3 / 2}}{h^{3}} E^{1 / 2} d E \ldots$ but take bach that fact of 2 \downarrow

$$
\begin{aligned}
& g_{B}(E) d E=\frac{4 \sqrt{2}}{n^{3}} \pi m_{B}^{3 / 2} E^{1 / 2} d E \\
& n_{B}(E) d E=g_{B}(E) F_{B E}(E) d E \quad F_{B E}(E)=\frac{1}{B e^{E / h \pi}-1} \\
& N=\int_{S}^{\alpha} n(E) d E=\frac{4 \sqrt{2}}{h^{3}} \pi m_{B}^{3 / 2} \int_{0}^{\alpha} \frac{E^{1 / 2} d E}{(E-\mu) / h T}-1
\end{aligned}
$$

$$
N=\int_{3}^{\alpha} n(E) d E=V \cdot \frac{4 \sqrt{2}}{h^{3}} \pi m_{B}^{3 / 2} \int_{0}^{\alpha} \frac{E^{1 / 2} d E}{e^{(E-\mu) / h T}-1}
$$

N cant be negative!

$$
e^{(E-\mu) / h T} \text { must } \mu b e>0 \ldots E \text { is }>0 \ldots \text { so }(T)<0 \quad \exists T
$$

chang variables $x=E / h T \geqslant$ let $T \downarrow$

$$
\begin{aligned}
& N=v \cdot \frac{4 \sqrt{2}}{h^{3}} \pi m^{3 / 2} h^{3 / 2} T^{3 / 2} \int_{0}^{\infty} \frac{x^{1 / 2}}{e^{x-\mu / h T}-1} d x \\
& \left.\uparrow \quad\right|_{\text {instant as }} \quad \text { ares } \backslash \text { as } T!\text {. } \downarrow
\end{aligned}
$$

constant as. goes \downarrow as $T \downarrow$
T \downarrow

$$
\text { must } \uparrow \text { as } T \downarrow \Rightarrow{ }_{\Rightarrow}|\mu(T)| \downarrow
$$

But: problem. At some point

$$
\mu(T)=0 \longrightarrow \text { at } T_{c} \longleftarrow \text { "critical" }
$$

$$
N=v \cdot \frac{4 \sqrt{2}}{h^{3}} \pi m^{3 / 2} h^{3 / 2} T^{3 / 2} \int_{0}^{\infty} \frac{x^{1 / 2}}{e^{x-\mu / h T}-1} d x
$$

luns: $\int_{0}^{\infty} \frac{x^{1 / 2} d x}{e^{x}-1}=2.315 \ldots$ ie, when $\mu\left(T_{c}\right)=0$

$$
N=\frac{v \cdot \frac{4 \sqrt{2}}{h^{3}} \pi m^{3 / 2} h^{3 / 2} T^{3 / 2}(2.315)}{T}
$$

Problem: caid continue $T \downarrow$

Belows T_{c} ? Troubse. Einstein to the rescme in 1924

Einstein's way out: sepreate ont the ground state : $E=0$

$$
N=\int_{s}^{\alpha} n(E) d E=\frac{V \cdot \sqrt{2} \pi m_{B}^{3 / 2}}{h^{3}} \int_{0}^{\alpha} \frac{E^{1 / 2} d E}{e^{(E-\mu) / h T}}-1 \quad\left\{\begin{array}{l}
\text { only applies in } \\
\text { Particles not in } g \cdot s .: \\
E>0 \text {, not } E=0
\end{array}\right.
$$

Below $T_{c} \ldots$

$$
N=N_{0}+N_{n}
$$

R normal CHe: He
ground state of He II
as $T \downarrow \ldots N_{n}$ is depLeted and N_{D} increases.

$$
T<T_{c}<T_{n}<T_{V}=4.2 K
$$

He \int ($\mathrm{H} e_{I}$ a liquid satisfying $N(T)$
something different
phase transition

