2. Thermodynamics, 2 lecture 9, September 18, 2017

housekeeping

exam 1 is in about 2 weeks
Friday, 29 September
Relativity and Thermodynamics

Remember the textbook for thermodynamics is Bauer and Westfall
you have it, or you can buy just chapters 17-21...see syllabus
Some changes:
you saw that I deleted a problem that I didn't think was useful in chapter 18
we will skip sections 19.6 and 19.7 as they will be dealt with in a more grown-up way in Thornton and Rex later
Shameless plug:
ISP220

THERMODYNAMICS
n.b. Chanters 17-20 in Baver \&. Westfall \rightarrow see sulabus!

17: Temrevature
measurina temperature
puoperties of matevials
18: Heat $\frac{1}{4} 1^{\text {st }}$ Law of Thermodymamics
hect a work
specific heats, lateut heat, phase transitions
enerqu transter
19: Ideal Gases
empivical velations
Ideal gas Law
Equipartition
Kinetic Theory
20: Second Law of Thevmodnu amics
Reversability - Carnot cycle
Eutropy

18: Heat $\frac{1}{i} 1^{\text {st }}$ Law of Thermodynamics heat i work
specific heats, latent heat, phase transitions energy transfer

HEAT \& WORK
Always interested in nitevactions among: temperature work heat pressure
area, A
Piston: force applied volume

$$
P_{G}=\frac{F_{G}}{A}
$$

more the piston a bit: $d \vec{s}$ bu the gas
"the system"
a gas here

$$
\begin{aligned}
d W(\text { gas })=\vec{F}_{G} \cdot d \vec{s} & =P_{G} \vec{A} \cdot d \vec{s} \\
& =P d V
\end{aligned}
$$

totol woin dowe by the aas: $\quad W=\int_{V_{i}}^{V_{f}} P d V$
vaise piston: $+w_{G}$
lower piston: $-W_{G}$
P.V diaquams

$$
d W=P d V
$$

$W=\int P d V$ area under P-V curve

Lots of waups to gs from ito f \square

Less

Move

Work
increase $V \Rightarrow$ gas moves piston up $\Rightarrow+W_{G}$

Managing thermodynamic cycles a"cycle":

$$
\begin{aligned}
W(\text { net }) & =\int_{v_{i}}^{v_{f}} P_{\mathbb{1}} d V+\int_{v_{f}}^{v_{i}} P_{(2)} d V \\
W(\text { net }) & =W_{i f}^{1}+W_{f i}^{(2)} \\
& >0
\end{aligned}
$$

$\checkmark \downarrow$
piston \downarrow

- Wa by alas
($+w_{G}$ by piston)

$$
i \rightarrow f \text { here }
$$

Adding heat to a substance:

- raise temperature (increase "internal energy")
- do work

But something stans constant:

$$
\begin{aligned}
\Delta Q-\Delta W & \\
& \equiv \Delta u \quad \text { internal energy }
\end{aligned}
$$

$$
\frac{\Delta u=\Delta Q-\Delta W}{\uparrow \uparrow ~ F I R S T ~ C A W ~ O F ~ T H E R M O D Y N A M L C S ~}
$$

change work done change in heat bu system
a state went of eneran conservation

State Functions
a property of the state of a sustem: State Function
P, V, T, U are state functions
Q, W are not
a point on DiV

Different Paths
$\Delta Q=\Delta u+\Delta W$
p

p

isuchoric

$$
\begin{aligned}
\Delta w= & P d v=0 \\
\Rightarrow \quad & \Delta Q=\Delta u+\Delta w \\
& \Delta Q=\Delta u
\end{aligned}
$$

heat $\rightarrow T \uparrow$

constant heat:
adiabatic

$$
\Delta Q=0 \Rightarrow \Delta u=-\Delta w
$$

work done by reducing internal everan

cycle
$\Delta u=0 \Rightarrow \Delta Q=\Delta W$
neat goes into work
C a useful engine!

All are "quasi-static"
\Rightarrow slow enough to
have thermal equilibrium at each point.. all times

Also:

$$
\begin{aligned}
& \Delta Q=0 \\
& \Delta W=0
\end{aligned} \Rightarrow \Delta u=0
$$

adiabatic, free expansion

Heat ! Calorimetry
Often:

coffee

$$
\begin{aligned}
& =0.2 \mathrm{ha} \\
& T_{c o}=70^{\circ} \mathrm{C} \\
& \text { copper cup } \\
& m_{c u}=0.1 \mathrm{hg} \\
& T_{c u}=20^{\circ} \mathrm{C}
\end{aligned}
$$

(, what's the final temperature, T of the two when thermel egrilibviom is reached?

$$
Q=\operatorname{cm} \Delta T \text { lost, or gained }
$$

$$
\begin{aligned}
& Q_{c u}(\text { gained })=Q_{c o}(\text { lost }) \\
& \kappa_{c u} m_{c u}\left(T_{c u}-T\right)=c_{c o} m_{c o}\left(T_{c>}-T\right)
\end{aligned}
$$

algebraic eq. tn T
so here with

$$
\left.\begin{array}{l}
c_{c u}=390 \mathrm{~J} / \mathrm{hg}^{\circ} \mathrm{C} \\
c_{\mathrm{co}}=4186 \mathrm{~J} / \mathrm{hq}{ }^{\circ} \mathrm{C}
\end{array}\right\} T=67.8^{\circ} \mathrm{K}
$$

EnerayTrausfer

SYSTEMS ARE USUALLY NOT isOLATED
heat migrates
conduction
convection radiation transfer mechanisms all around you

Conduction

- atoms of adjacent -"touching"- media move, rotate, and/or vibrate
- collide \ddagger transfer these motions (energy moves. not atoms)

"Therme Conductivity"

$$
\begin{gathered}
\omega / m k \\
H=\frac{k A\left(T_{H}-T_{c}\right)}{\Delta x}
\end{gathered}
$$

$$
H=\frac{\frac{\Delta \dot{\Delta} T}{}}{\sqrt[\Delta x]{\Delta x} K}
$$ resistame

sevies of conducfors: $R_{\text {eq }}=R_{1}+R_{2}+\ldots$

Convection
material mores \Rightarrow fluid, gas or liquid

Fireplaces
Why Buitian is not frozen atmospheric thighs and Lows Solar convection

Radiation
electromagnetic radiation \rightarrow everything radiates (thermal validation)

P_{R} power radiated.. energy/time ... watts

$$
P_{R} \propto \text { (details of surface) A } T^{4}
$$

$$
P_{R}=\sigma \varepsilon A T^{4}
$$

Boltzmann constant

Stefan-Boltzmann constant

$$
\sigma=5.6703 \times 10^{-8} \mathrm{w} / \mathrm{m}^{2} \mathrm{k}^{4}
$$

radiation:

$$
P_{R}=\sigma \varepsilon A T^{4}
$$

Stefan-Boltzmann Law

$$
1879
$$

$$
1884 \text { theorm. }
$$

absouption:

$$
P_{\text {abs }}=\sigma \varepsilon A T_{\text {env }}^{4}
$$

enviornwout
$0<\varepsilon<1 \quad$ light obiects, Esmall
dauh objects. ε larqe $\varepsilon=1$, totol absouptim Blackbady Radiator

19: Ideal Gases empirical relations Ideal gas law Equipartition Kinetic Theory

I deal Gases

Astonishingly: simple, vevsitile, ewtigutening
Few assuuptions: lavge N
point-like obiects
wost acses identical obiects
no forces among objects arproad this for swall P, ρ

Histovical roots:
Boule's Law
$P V=$ coustant
(@ fixed T $\frac{\xi}{4}$)
Chavles'Law $\quad V / T=$ constant (@ fixed N $\Sigma \cdot P$)

Idea GasLaw (s) $P V=n R T$ or $P V=N k T$

isotherm, T

$$
P=\frac{n R T}{V}
$$

V
$V_{f}>V_{i}$ expansion $\quad \Delta W>0$
$v_{i}>v_{f}$ compression $\Delta W<0$
example 2.1 Calculate wot drue by external agent on 1 mole of O_{2} from $V=22.4 \mathrm{~L}$ @ $0^{\circ} \mathrm{C}$ and $P=1 \mathrm{~atm}$ to $V=16.8 \mathrm{~L} \rightarrow$ isothermal compression

$$
\begin{aligned}
& \begin{aligned}
& W=n R T \ln \left(V_{f} / V_{j}\right) \leftarrow \mathrm{m} \text { gas. } \\
&=(1 \text { mol })(8.31 \mathrm{~J} / \text { moll })(273 \mathrm{~K}) \ln (16.8 / 22.4) \\
& W=-653 \mathrm{~J} \\
& W(\text { by agent })=+653 \mathrm{~J}
\end{aligned}
\end{aligned}
$$

example 2.2
Ideal gas@ $T=10^{\circ} \mathrm{C} \frac{1}{2} P=100 \mathrm{hPa}$ hus $V=2.5 \mathrm{~m}^{3}$.
a) How many motes of the gas ave there?
b) If $\mathrm{P} \rightarrow 300 \mathrm{hPa}$ and $T \rightarrow 30^{\circ} \mathrm{C}$ what is new V ?

Units!
atuospheíc pressure

$$
\begin{aligned}
1 \mathrm{~atm} & =1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\left(=14.7 \mathrm{lb} / \mathrm{m}^{2}\right) \\
& =1.013 \times 10^{5} \mathrm{~Pa} \quad \text { "Pascals" } \mathrm{Si} \\
& =1013 \text { millibars } \\
& =26.0 \mathrm{~cm} \mathrm{Hg}_{\mathrm{g}} .
\end{aligned}
$$

So, $100 \mathrm{hPa}=10^{5} \mathrm{~Pa}$
about 1 atm.
a) moles:

$$
\begin{aligned}
P V= & n R T \\
n= & \frac{P V}{R T} \quad R=0.31 \mathrm{~J} / \mathrm{mdl} \cdot \mathrm{~K} \\
= & \frac{\left(10^{5} \mathrm{~N} / \mathrm{m}^{7}\right)\left(2.5 \mathrm{~m}^{3}\right)}{(8.31 \mathrm{~J} / \mathrm{md} \cdot \mathrm{~K})(10+273) \mathrm{K}} \quad \mathrm{~N} \cdot \mathrm{~m} \rightarrow \mathrm{~J} \\
n & =106 \mathrm{~mol}
\end{aligned}
$$

b) P: $100 \mathrm{hPa} \rightarrow 300 \mathrm{hPa}$
$T: \quad 10^{\circ} \mathrm{C} \rightarrow 30^{\circ} \mathrm{C}$
what stans the same? n
$V: \quad 2.5 \mathrm{~m}^{3} \rightarrow$?

$$
\begin{aligned}
& \underbrace{\substack{r_{2} \\
V_{2} \\
V_{1}=\left(\frac{T_{2}}{T_{1}}\right)\left(\frac{P_{1}}{P_{2}}\right) V_{1}}}_{\substack{P_{1} V_{1}=n_{1} R T_{1} \\
n_{1}=n_{2}=n} P_{2} V_{2}=n_{2} R T_{2}} \\
& V_{2}=0.892 \mathrm{~m}^{3}
\end{aligned}
$$

"Kinetic Theory" very old $\$$ very cool

Imagine a vohunce fined with woleutes

- Identical , m
- mo size
- no interactions
- numevous \Rightarrow ignore fluctuations $-\frac{1}{\sqrt{N}}$ Sounds line?

collides elastically from wall

$\Delta t=$ average time between collisions at $x=0 \& \quad x=L_{2}$, vornd trip
$\Delta t=\frac{2 L}{\left|v_{x}\right|}$
moventum transfered to wall

$$
\Delta p_{x}=2 m\left|v_{x}\right|
$$

rate at which momentum is trausfared

$$
\frac{\Delta P_{x}}{\Delta t}=\frac{2 m\left|v_{x}\right|}{2 L /\left|v_{x}\right|}=\frac{m v_{x}^{2}}{L}=\left\langle F_{x}\right\rangle_{\substack{\text { bione } \\ \text { wolecule }}}
$$

total frice ampied to $x=0$ or $x=L$ walls:

$$
\langle F\rangle=\frac{N m v_{x}^{2}}{L}
$$

Pressuve:

$$
P=\frac{\langle F\rangle}{A}=\frac{N m v_{x}^{2}}{L^{2} L}=\frac{N m v_{x}^{2}}{V}
$$

use averages: $v_{x}^{2} \rightarrow\left\langle N_{x}^{2}\right\rangle \quad P=\frac{N m\left\langle v_{x}^{2}\right\rangle}{v}$

$$
P=\frac{N m\left\langle v_{x}^{2}\right\rangle}{V}
$$

nothing specid about x. on averape

$$
\begin{gathered}
\left\langle v_{x}^{2}\right\rangle+\left\langle v_{n}^{2}\right\rangle+\left\langle v_{z}^{2}\right\rangle \equiv\left\langle v^{2}\right\rangle \\
\text { so } \quad\left\langle v_{x}^{2}\right\rangle=\frac{1}{3}\left\langle v^{2}\right\rangle
\end{gathered}
$$

$$
\begin{aligned}
& P=N_{m}\left\langle\frac{\left.v^{2}\right\rangle}{3 v}\right. \\
& P V=\frac{1}{3} N m\left\langle v^{2}\right\rangle
\end{aligned}
$$

= Constart... BoylésLaw

Now remamber ideal qas law: $P V=$ NhT
THE MAGIC:

$$
\begin{aligned}
& P V=\frac{1}{3} N m\left\langle v^{2}\right\rangle=N h T \quad \text { fn an ideal qas } \\
& h T=\frac{1}{3} m\left\langle v^{2}\right\rangle=\frac{2}{3} \cdot \frac{1}{2} m\left\langle v^{2}\right\rangle=\frac{2}{3} K \\
& \text { WHOA. }
\end{aligned}
$$

