2. Thermodynamics, 2 lecture 9, September 18, 2017

housekeeping

exam 1 is in about 2 weeks

Friday, 29 September

Relativity and Thermodynamics

Remember the textbook for thermodynamics is Bauer and Westfall

you have it, or you can buy just chapters 17-21...see syllabus

Some changes:

you saw that I deleted a problem that I didn't think was useful in chapter 18

we will skip sections 19.6 and 19.7 as they will be dealt with in a more grown-up way in Thornton and Rex later

Shameless plug:

ISP220

THERMODYNAMICS

N.b. Chapters 17-20 in Baver & Westfall -> see sylables!

17: Temperature measuring temperature purperties of materials

18: Heat & 1st has of Thermodynamics heat & work

specific heats, latent heat, phase transitions Energy transfer

19: Ideal Gases empirical relations Ideal Gas Law Equipartition Kinetic Theory

20: Second Law of Thermodynamics Reversability - Carnot Cycle Entropy

Heat & 1⁵⁴ Law of Thermodynamics heat & work specific heats, latent heat, phase transitions energy transfer 18:

Mol Specific Heat A(g) overage Specific Heat Element J/nole K J/hqK Lead 128 207 26.5 Tungeten 24.8 134 184 Silver 25.5 236 108 Copper 386 24.5 63.5 Aswinum 900 24.4 27 water 4,190 18 75.2

HEAT & WORK Aways interested in interactions among: temperature work heat pressure Piston: force applied volume avea, A volume well-insulated walls $P_{G} = \frac{F_{G}}{A}$ more the piston a bit: Is by the gas heat source "the system" dW(qas) = F. ds = PA. ds a gas here = PdV

Lots of ways to go from its f Work Move Less Increase V => gas moves piston up => + Wg

Adding heat to a substance: · vaise temperature (increase "internal every") . do work But something stays constant: < empirical DQ - AW = An internel energy $\Delta u = \Delta Q - \Delta W$ \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow change in heart by system $<math>\bar{n}_{internel}$ impart energyFIRST LAW OF THERMODYNAMICS a state went of energy conservation vaises temperature

State Functions a property of The state of a system: State Function P.V.T.U are state functions Q, W are not path independent path-dependent a point on P-V

Often: Heat & Calorimetry TB, PB, VB, MB, FB TA, PA, VA, MA, P thee $m_{co} = 0.2hg$ Tco=70°C Copper cup Qcu (qcined) = Qco (lost) Ma= 0,1 hg Ton= 20°C Koumar (Tou-T) = Koomes (Tes-T) , what's the final temperature, T algebraic eq. th T of the two when there e so here with equilibrium is reached? Ccs = 4186 J/4°C / T= 67.8°C Cev = 390 J /hg °C Q = LM AT Lost, or gained

Energy Transfer

SYSTEMS AME USUALLY NOT IS OLATED

heat migrates

Conduction

convection

transfer mechanisms

radiation

all around you

Conduction AX ->> atoms of adjacent -touching - media SA 石 Tc move, votate, and/or vibrote · coulde & transfer these motions (energy moves. not atoms) $\frac{\Delta Q}{\Delta t} = \frac{\kappa A}{1} \frac{\Delta T}{\Delta x}$ A = heat Conduction "Thermal Conductivity" vate WMK J/s, cal/s H = KA(TH-Tc) \uparrow Watts ΔX H= AAT R, thermal resistance

material	K(^W /mK)	
staintess steel	14	Restance of the second
lead	35	
Copper	401	chamse to Zoom
fibevalass	0.048	
window glass	1.0	9"
dry air	0.026	
He	0.15	47.9
H ₂	0.18	$R(ff^{2}F_{WBTW}) = 5.678 R(\frac{m^{2}F}{W})$
		$R = \Delta x = (9')(2.54 \text{ cm/m})(\frac{1 \text{ m}}{100 \text{ cm}})$ $K = 0.048 \text{ W/mh}$ $R = 4.8 \text{ US} - 27$
series	st conducto	$rs: R_{eq} = R_1 + R_2 + \cdots$

Convection waterial woves => fluid, gas or liquid HUT COOL e move dense to e less dense î COUL Fireplaces Why Britianis not frozen atmospheric Highs and Lows Solar convection

Radiation

electromagnetic radiation -> everything vadicles

(thermal valuation)

Rote x T⁴

PR power radicted -- energy/time ... watts PR & (details of surface) AT⁴

PR = JEAT⁴ "emissivity" (O<E<I) Stefan-Boltzmann comptant

T = 5.6703 × 10-8 W/m2K4

P_R = JEAT⁴ Stefan - Boltzmann Law 1384 theory 1879 experiment absorption : Pabs = GEAT4 env enviornment E Small light objects. 04241 Lauh objects, E large E=1, total absorption Blackbuchy Radiator

Ideal Gases empirical relations Ideal Gas Law Equipartition Kinetic Theory

19:

I deal Gases

Astonishingly: simple, versitile, enrightening

Feu assumptions: large N point-like objects identical objects no forces among objects

nost acses approach this for small P, p

Historical roots:

(C fixed T & N) PV = constant Boyle's Law (@fixed N Z. P) Charles' Law V/T = constant

6) moles: PV=NRT R= 8.31 J/mal-K N= PV RT $= (10^5 N/m^2) (2.5 m^3)$ N·m -> J (8.31 J/md. 14) (10+273) 4 n = 106 mol6) P: 100hPa - 300hPa 10°C - 30°C what stars the same? I T: 2.5 m³ -> 3 V: PiVi = NRTI & PZVZ = NZRTZ $\frac{P_i V_i}{T_i} = \frac{P_z V_z}{T_z}$ $V_2 = \left(\frac{T_2}{2}\right) \left(\frac{P_1}{2}\right)$ $N_1 = N_2 = N$ $V_2 = 0.892 \text{ m}^3$

$$\Delta t = \frac{2L}{|V_{X}|}$$

$$\Delta P_{X} = 2m |V_{X}|$$

$$\Delta P_{X} = 2m |V_{X}|$$

$$Vate at which momentum is transferred reaverage"
$$\frac{\Delta P_{X}}{\Delta t} = \frac{2m |V_{X}|}{2L/|V_{X}|} = \frac{mv_{X}^{2}}{L} = \langle F_{X} \rangle_{m_{1}} a_{x}$$

$$wole are total frice applied to X = 0 or X = L walls!$$

$$(F) = Nlmv_{X}^{2}$$

$$L$$

$$Pvessove:$$

$$P = \langle F_{X} \rangle = Nmv_{X}^{2} = \frac{Nmv_{X}^{2}}{V}$$

$$Vse overages: v_{X}^{2} \rightarrow \langle N_{X}^{2} \rangle$$

$$P = Nm \langle v_{X}^{2} \rangle$$

$$P = Nm \langle v_{X}^{2} \rangle$$$$

Now remansher ideal gas law: PV= NhT

THE MAGIC .

$$PV = \frac{1}{3} Nm \langle v^2 \rangle = NhT \qquad \text{fn an ideal qas}$$
$$hT = \frac{1}{3} m \langle v^2 \rangle = \frac{2}{3} \cdot \frac{1}{2} m \langle v^2 \rangle = \frac{2}{3} K$$
$$WHOA.$$