2. Thermodynamics, 3 lecture 10, September 20, 2017

housekeeping

exam 1 is in about 1.5 weeks

Friday, 29 September

Relativity and Thermodynamics...through Monday's content

Some changes:

you saw that I deleted a problem that I didn't think was useful in chapter 18

we will skip sections 19.6 and 19.7 as they will be dealt with in a more grown-up way in Thornton and Rex later

Shameless plug:

ISP220

Honors option

someone show me what you've got to submit

Gripes

$$\Delta t = \frac{2L}{|V_{X}|}$$

$$\Delta P_{X} = 2m |V_{X}|$$

$$\Delta P_{X} = 2m |V_{X}|$$

$$Vate at which momentum is transferred reaverage"
$$\frac{\Delta P_{X}}{\Delta t} = \frac{2m |V_{X}|}{2L/|V_{X}|} = \frac{mv_{X}^{2}}{L} = \langle F_{X} \rangle_{m_{1}} a_{x}$$

$$wole are total frice applied to X = 0 or X = L walls!$$

$$(F) = Nlmv_{X}^{2}$$

$$L$$

$$Pvessove:$$

$$P = \langle F_{X} \rangle = Nmv_{X}^{2} = \frac{Nmv_{X}^{2}}{V}$$

$$Vse overages: v_{X}^{2} \rightarrow \langle N_{X}^{2} \rangle$$

$$P = Nm \langle v_{X}^{2} \rangle$$

$$P = Nm \langle v_{X}^{2} \rangle$$$$

Now remansher ideal gas law: PV= NhT

THE MAGIC .

$$PV = \frac{1}{3} Nm \langle v^2 \rangle = NhT \qquad \text{fn an ideal qas}$$
$$hT = \frac{1}{3} m \langle v^2 \rangle = \frac{2}{3} \cdot \frac{1}{2} m \langle v^2 \rangle = \frac{2}{3} K$$
$$WHOA.$$

$$PV = \frac{1}{3} Nm \langle u^2 \rangle = NhT \qquad fn \text{ an ideal } qas$$

$$hT = \frac{1}{3}m \langle u^2 \rangle = \frac{2}{3} \cdot \frac{1}{2}m \langle u^2 \rangle = \frac{2}{3}K \qquad \cdots \qquad veally \qquad \frac{2}{3} \langle K \rangle$$

$$A \quad CAS TEMPERATURE = AVERAGE KINETIC ENERGY OF MOLECULES$$

N = # molecules h = Boltzmann's Constant = 1.38066'×10⁻²³ J/K h = # moles R = Universal gas Constant = 8.3145×10⁻²³/mol

PU= NhT & PV= nRT => Ideal gas Law has a basis in a physical wodel

< K> = 1 m<02> = 3 hT $\langle v^2 \rangle = 3h\tilde{t}$ or $\langle v_x^2 \rangle = h\tilde{t}$ $= \sqrt{\frac{3hT}{14}}$ $u_{\rm rms} = \sqrt{\langle v^2 \rangle}$ give me the temperature I'll tell you Air @ 20°C? m of Nz = 28 amn = 28 × 1.66 × 10⁻²⁷ hg now fast the moleculesare = 4.648 × 10 -25 hg. ging. $U_{\rm rms} = \sqrt{\frac{3}{m}} = \sqrt{\frac{(3)(1.38 \times 10^{-22} \, {\rm J/K})(213 \, {\rm K})}{4.65 \times 10^{-24} \, {\rm Lg}}}$ = 510 m/s * 1 x mass of Carbon 12

Degrees of Freedom
monotonic gas - Ideal Gas - () no structure
The temperature - internal energy, aftered -> kiretic

$$L = N \frac{3}{2} LT = \frac{3}{2} n N_{p} LT = \frac{3}{2} n ZT$$

Maxwell invented. "dof" -> how many ways can you contribute
to energy
For our Ideal Gas: 3 V_{X}, V_{y}, V_{z} The (3) $U = N \frac{3}{2} LT$
Each dof adds $\frac{1}{2} LT \cdot N$ to U

Suppose a DIATOMIC molewle? O2. N2 ---It can translate in 3 directions physical model It can votate in 2 planes independently $E = \frac{1}{2} M v_{x}^{2} + \frac{1}{2} M v_{y}^{2} + \frac{1}{2} M v_{z}^{2} + \frac{1}{2} I_{\theta} \omega_{\theta}^{2} + \frac{1}{2} I_{\theta} \omega_{\phi}^{2}$ 50 L = 5 URT

Suppose it's a VIBRATING dumbbell Coop $E = \frac{1}{2} M v_{\mu}^{2} + \frac{1}{2} M v_{\eta}^{2} + \frac{1}{2} M v_{\eta}^{2} + \frac{1}{2} I_{\theta} \omega_{\theta}^{2} + \frac{1}{2} I_{\theta} \omega_{\phi}^{2}$ + 1/2 m vx' + 1/2 hx'2 > 7 dof vedneerl distance wass q between system atoms 50 $u = \frac{7}{2} nRT$

Equipartition of Energy

An average energy of INRT or Int is associated with each

of the variables of a system of particles

and the energy is shared equally among all degrees of freedom.

This will haven't physics in 1900.

Molau Specific Heats For gases, two hinds of specific heat . Constant volume · constant pressure Constant V : DQ= nCVDT " " specific heat at constant volume P Remember: $\Delta W = 0$ DQ=DH+SW 1st Law: V OQ= DH = ZNRAT (monotonic) $\Delta Q = n C_{V} \Delta T$ Ł NGVAT = ZNRAT $C_v = \frac{3}{2}R = 12.5 J/wol.K$

Constant P: DW=PDV DQ=nCpDT V (A LOW : DQ = DU + DW DQ = DU + PAV For an ideal gas: PV=nRT SPV + PAV = n RAT in general 4 = 0 PAV = NRAT also $\Delta h = \frac{3}{2} nRT$ (nonstanic) $\Delta Q = \frac{3}{2} nRT + nRAT = \frac{5}{2} nRT$ 50 NCPAT = SURT $C_{p} = \frac{5}{2}R = 29.78 J/mel.K$

Notice:
$$C_{p} = \frac{5}{2}R = 23.78 \text{ J/mel} \cdot K$$

 $C_{v} = \frac{3}{2}R = 12.5 \text{ J/mol} \cdot K$
50 $C_{P} - C_{v} = \frac{5}{2}R - \frac{3}{2}R = R$
 $C_{p} = C_{v} + R$

Table		s at 15°C and						Cv	
Gas	<i>c</i> _v (J/K)	$c_{\rm V}/R$						Ξv	
Ar He CO	12.5 12.5 20.7	1.50 1.50 2.49				3 dof	O	312 R	T
H ₂ HCl N ₂ NO O ₂	20.4 21.4 20.6 20.9 21.1	2.45 2.57 2.49 2.51 2.54				5 dof	a d	512	T
$\begin{array}{c} \mathrm{Cl}_2\\ \mathrm{CO}_2\\ \mathrm{CS}_2\\ \mathrm{H}_2\mathrm{S}\\ \mathrm{N}_2\mathrm{O}\\ \mathrm{SO}_2\end{array}$	$ \begin{array}{c} 24.8\\ 28.2\\ 40.9\\ 25.4\\ 28.5\\ 31.3 \end{array} $	2.98 3.40 4.92 3.06 3.42 3.76				7 dof	0. 0	2 R	.T
	5/m01.K -25.1 -25.1 -16.7 $-C_{\tau}$ -12 -8.4	- 4		2000	© ,~® 		O Vibra Rota Transla	tion	$-\frac{7}{2}R$ $-\frac{5}{2}R$ $-\frac{3}{2}R$
		0 0 25	50 75	5 100	250 S T(K)	500 1,000	2,500	5,000 10	0,000

Adiabatic Expansion of an Ideal Gas high P, suddenly released a change that's QUICK or WELL INSULATED -> Q wither leaves nov enters "Adichatiz" "adiabat" steeper than isotherms P isotherms V Since $\Delta Q = 0$ $-\Delta u = \Delta W$ decreases decreases since TV UZ

a tricky point: DQ=nCvAT => $nC_v = \frac{\Delta Q}{\Delta T}$ $= \Delta u$ ΔT means "at constant volume or for infinitesimal changes $nC_v = dN |_v$ nG = duu = u(T) only. ÿ period For Ideal Gases

Each to 1st Law:

$$\Delta Q = \Delta U + \Delta W \rightarrow dQ = dU + dW$$

$$for alicohorit$$

$$(A) \qquad 0 = dU + dW = nC_V dT + PdV$$

$$for Ideal Ges: PV = nRT$$

$$(B) \quad dT = \frac{VdP + PdV}{nR}$$

$$(B) \quad dT = \frac{VdP + PdV}{nR}$$

$$(C) \quad VdP + PdV = nRdT$$

$$(C) \quad VdP + PdV = -\frac{PdV}{nC_V}$$

$$PdV (1 + \frac{R}{C_V}) = -VdP$$

$$hut \quad C_V + C_P = R$$

$$So \quad PdV (1 + C_P - C_V) = -VdP$$

$$PdV (1 + C_P - 1) = -VdP$$

$$PdV (1 + C_P - 1) = -VdP$$

$$CV$$

$$PdVS = -VdP$$

$$\frac{dVS}{V} + \frac{dP}{P} = 0$$
for a finite thermodynamic change -p integrate
$$S\int \frac{dV}{V} + \int \frac{dP}{P} = 0$$

$$S\ln V + \ln P = \ln (constant)$$

$$PV^{S} = (constant) \quad \text{fn an ideal gas}$$

steeper than isotherms adiabat adiabat P isotherms get Work $P_{i}V_{i}^{X} = P_{f}V_{f}^{X} = Constant \equiv K$ $W = \int_{V_{i}}^{V_{f}} P dV = \int_{-n}^{T_{f}} C_{v} dT$ V_{i} $dT = -\frac{PdV}{nC_V}$ A $b = \frac{k}{k}$ $= \frac{1}{1-Y} \left(KV_{f}^{1-Y} - KV_{i}^{1-Y} \right)$ JEL JV

Adrapatic transitions are special ... like Goldilocks

Be fast enough to not lose heat

Re slow enough to unitorn throughout

just visut

Gasoline & Diesel engine strokes are ~adiabatil
compression stroke is fast - up heat bears

$$Y > 1$$
 So a hoost in changing pressure
Compression ratio ... $15/1$, or so
 $P_{i}V_{i}^{i} = P_{f}V_{f}^{i}$ $Y = 1.4$ for air
 $P_{i} = P_{i} \left(\frac{V_{i}}{V_{f}}\right)^{Y} = P_{i} \left(15\right)^{14} - 44 P_{i} \Rightarrow 44 \text{ otm.if}$
 $P_{f} = P_{i} \left(\frac{V_{i}}{V_{f}}\right)^{Y} = P_{i} \left(15\right)^{14} - 44 P_{i} \Rightarrow 44 \text{ otm.if}$
 $P_{i} = air$
If he molecules escope?
From hu Ideal gas law non car sum: $T_{f} = T_{i} \left(\frac{V_{i}}{V_{f}}\right)^{Y-1}$
 $T_{f} = T_{i} \left(\frac{V_{i}}{V_{f}}\right)^{Y-1} = 3T_{i} \left\{\begin{array}{c} T = 300 \text{ K} \\ T = 900 \text{ K} \end{array}\right\}$ (spice
 $T_{f} = T_{i} \left(\frac{V_{i}}{V_{f}}\right)^{Y-1} = 3T_{i}$

adrainatic standard physical example: not isother wel -> factor Z1/ air: 8=1.4 $V_f = 4L$ $V_0 = ZL$ $T_o = Zo^{\circ} T_f = ?$ work against wall $P_{b} = 1 a t m P_{f} = ?$ first pressure ... iquine T $P_{o}V_{o}^{\delta} = PV^{\delta}$ temperature ... igune P $P = P_o \left(\frac{V_o}{V}\right)^{4}$ $P = 1 \text{ atm} \left(\frac{2}{4}\right)^{1.4}$ $T_{0}V_{0}^{\delta-1} = TV^{\delta-1}$ $T = T_{o} \begin{pmatrix} V_{o} \\ \overline{V} \end{pmatrix}$ 0.4 $= 293 \left(\frac{2}{4}\right)$ P = 0.38 atm = 222K = -51°C

