## 2. Thermodynamics, 3

lecture 10, September 20, 2017

## housekeeping

exam 1 is in about 1.5 weeks
Friday, 29 September
Relativity and Thermodynamics...through Monday's content


Some changes:
you saw that I deleted a problem that I didn't think was useful in chapter 18
we will skip sections 19.6 and 19.7 as they will be dealt with in a more grown-up way in
Thornton and Rex Iater
Shameless plug:
ISP220
Honors option
someone show me what you've got to submit
Gripes
"Kinetic Theory" very old $\$$ very cool

Imagine a vohunce fined with woleutes

- Identical , m
- mo size
- no interactions
- numevous $\Rightarrow$ ignore fluctuations $-\frac{1}{\sqrt{N}}$ Sounds line?


collides elastically from wall

$\Delta t=$ average time between collisions at $x=0 \& \quad x=L_{2}$, vornd trip
$\Delta t=\frac{2 L}{\left|v_{x}\right|}$
moventum transfered to wall

$$
\Delta p_{x}=2 m\left|v_{x}\right|
$$

rate at which momentum is trausfared

$$
\frac{\Delta P_{x}}{\Delta t}=\frac{2 m\left|v_{x}\right|}{2 L /\left|v_{x}\right|}=\frac{m v_{x}^{2}}{L}=\left\langle F_{x}\right\rangle_{\substack{\text { bione } \\ \text { wolecule }}}
$$

total frice ampied to $x=0$ or $x=L$ walls:

$$
\langle F\rangle=\frac{N m v_{x}^{2}}{L}
$$

Pressuve:

$$
P=\frac{\langle F\rangle}{A}=\frac{N m v_{x}^{2}}{L^{2} L}=\frac{N m v_{x}^{2}}{V}
$$

use averages: $v_{x}^{2} \rightarrow\left\langle N_{x}^{2}\right\rangle \quad P=\frac{N m\left\langle v_{x}^{2}\right\rangle}{v}$

$$
P=\frac{N m\left\langle v_{x}^{2}\right\rangle}{V}
$$

nothing specid about $x$. on averape

$$
\begin{gathered}
\left\langle v_{x}^{2}\right\rangle+\left\langle v_{n}^{2}\right\rangle+\left\langle v_{z}^{2}\right\rangle \equiv\left\langle v^{2}\right\rangle \\
\text { so } \quad\left\langle v_{x}^{2}\right\rangle=\frac{1}{3}\left\langle v^{2}\right\rangle
\end{gathered}
$$

$$
\begin{aligned}
& P=N_{m}\left\langle\frac{\left.v^{2}\right\rangle}{3 v}\right. \\
& P V=\frac{1}{3} N m\left\langle v^{2}\right\rangle
\end{aligned}
$$

= Constart... BoylésLaw

Now remamber ideal qas law: $P V=$ NhT
THE MAGIC:

$$
\begin{aligned}
& P V=\frac{1}{3} N m\left\langle v^{2}\right\rangle=N h T \quad \text { fn an ideal qas } \\
& h T=\frac{1}{3} m\left\langle v^{2}\right\rangle=\frac{2}{3} \cdot \frac{1}{2} m\left\langle v^{2}\right\rangle=\frac{2}{3} K \\
& \text { WHOA. }
\end{aligned}
$$

$$
\begin{aligned}
& P V=\frac{1}{3} N m\left\langle v^{2}\right\rangle=N h T \quad \text { fn an ideal qas } \\
& h T=\frac{1}{3} m\left\langle v^{2}\right\rangle=\frac{2}{3} \cdot \frac{1}{2} m\left\langle v^{2}\right\rangle=\frac{2}{3} K \quad \cdots \operatorname{veally} \frac{2}{3}\langle K\rangle
\end{aligned}
$$

A GAS TEKMPERATURE = AVERAGE KIWETLC ENERGY OF MOLELULES

$$
\langle K\rangle=\frac{3}{2} h T \quad u=N\langle K\rangle \text { so } \quad P V=\frac{2}{3} u
$$

$N=$ \# molecules
$h=$ Boltzmann's Coustaut $=1.38066 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$n=\#$ moles
$R=$ Universcl Gas Constant $=8.3145 \times 10^{23} / \mathrm{msl}$
$P V=$ NhT $~ P V=n R T \Rightarrow$ Ideal qas Law has a busis in a physical wodel

$$
\begin{aligned}
& \langle k\rangle=\frac{1}{2} m\left\langle v^{2}\right\rangle=\frac{3}{2} k T \\
& \left\langle v^{2}\right\rangle=\frac{3 k T}{m} \quad \text { or }\left\langle v_{x}^{2}\right\rangle=\frac{h T}{m} \\
& v_{r m s}=\sqrt{\left\langle v^{2}\right\rangle}=\sqrt{\frac{3 k T}{m}}
\end{aligned}
$$

₹ $\quad$ give me the temperature
I'll tell you
now fast the molecules are going.

Air $e 20^{\circ} \mathrm{C}$ ?
m of $N_{2}=28$ amu $^{*}=28 \times 1.66 \times 10^{-27} \mathrm{hq}$

$$
=4.648 \times 10^{-25} \mathrm{hq}
$$

$u_{\text {rms }}=\sqrt{\frac{3 \mathrm{hT}}{\mathrm{m}}}=\sqrt{\frac{(3)\left(1.38 \times 10^{-22} \mathrm{~J} / \mathrm{K}\right)(293 \mathrm{~K})}{4.65 \times 10^{-26} \mathrm{hq}}}$

$$
=510 \mathrm{~m} / \mathrm{s}
$$

* $\frac{1}{12} \times$ mass of Carbon 12

Deaves of Freedom
monotonic gas - Idealgas - (2) no structure
The temperature - internal every, afterall $\rightarrow$ Kinetic

$$
u=N \frac{3}{2} h T=\frac{3}{2} n N_{A} h T=\frac{3}{2} n R T
$$

Maxwell invented: "dof" $\rightarrow$ how many ways can won contribute to energy

For our Idea Gas: $3 \quad v_{x} v_{y}, v_{z}$ the (3) $u=N \frac{3}{2} h T$ Each do adds $\frac{1}{2}$ hT.N to u

Suppose a DATOMC molecule? $\mathrm{O}_{2}, \mathrm{~N}_{2} \ldots$

It can translate in 3 directions
physical model It can rotate in 2 planes indeperdantly

so

$$
\begin{aligned}
& E=\frac{1}{2} M v_{x}^{2}+\frac{1}{2} \mu v_{\eta}^{2}+\frac{1}{2} \mu v_{z}^{2}+\frac{1}{2} I_{\theta} \omega_{\theta}^{2}+\frac{1}{2} I_{0} \omega_{\phi}^{2} \\
& u=\frac{5}{2} u R T
\end{aligned}
$$

Surnose it's a UIBRATING dumbbell

$$
\begin{aligned}
& E=\frac{1}{2} M v_{x}^{2}+\frac{1}{2} \mu v_{\eta}^{2}+\frac{1}{2} \mu v_{z}^{2}+\frac{1}{2} I_{\theta} \omega_{\theta}^{2}+\frac{1}{2} I_{0} \omega_{\phi}^{2} \\
&+1 / 2 \mu v_{x^{\prime}}^{2}+1 / 2 h x^{\prime 2} \\
& \uparrow
\end{aligned} \quad \Rightarrow 7 \text { dof }
$$

So... $u=\frac{7}{2} n R T$

Equipartition of Energy
An average energy of $\frac{1}{2} n R T$ or $\frac{1}{2} h T$ is associatal wit each of the variables of a system of parties curl the everam is shared equally among all degrees of freedom.

This will haunt physics in 1900.

Molas Specific Heats
For gases, two hinds of specific heat

- Constant volume
- Constant pressure

Constant V :

$$
\Delta Q=n c_{v} \Delta T
$$

"spesfinneat at constant volume
Remember:

$$
\begin{aligned}
& \text { p } \\
& \text { I } \mid \quad \Delta w=0 \\
& \text { dst Law: } \quad \Delta Q=\Delta u+\Delta W \\
& \Delta Q=\Delta u=\frac{3}{2} n R \Delta T \\
& \text { (monotonic) } \\
& \therefore \quad \Delta Q=n C_{V} \Delta T \\
& n c_{v} \Delta T=\frac{3}{2} n R \Delta T \\
& c_{v}=\frac{3}{2} R=12.5 \mathrm{~J} / \text { wow. } \mathrm{K}
\end{aligned}
$$

Constant P:

$$
\longrightarrow
$$

$$
\Delta W=P \Delta V
$$

$$
\Delta Q=n C_{p} \Delta T
$$

cst Law:

$$
\begin{aligned}
& \Delta Q=\Delta u+\Delta w \\
& \Delta Q=\Delta u+P \Delta V
\end{aligned}
$$

For an ideal gas:

$$
\begin{aligned}
& P V=n R T \\
& \Delta P V+P \Delta V=n R \Delta T \quad \text { in qeneval } \\
& =0 \quad P \Delta V=n R \Delta T
\end{aligned}
$$

also $\Delta u=\frac{3}{2} n R T$ (monotonic)
so

$$
\Delta Q=\frac{3}{2} n R T+u R \Delta T=\frac{5}{2} u R T
$$

and

$$
\begin{aligned}
n C_{p} \triangle T & =\frac{5}{2} n R T \\
C_{p} & =\frac{5}{2} R=20.78 \mathrm{~J} / \mathrm{mal} \cdot \mathrm{~K}
\end{aligned}
$$

Notice:

$$
\begin{aligned}
& C_{p}=\frac{5}{2} R=20.78 \mathrm{~J} / \mathrm{mal} \cdot \mathrm{k} \\
& C_{v}=\frac{3}{2} R=12.5 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}
\end{aligned}
$$

so

$$
\begin{aligned}
& C_{P}-C_{V}=\frac{5}{2} R-\frac{3}{2} R=R \\
& C_{p}=C_{V}+R
\end{aligned}
$$



$$
\Delta W=0
$$

$$
\begin{aligned}
n c_{v} \Delta T & =\frac{3}{2} n R \Delta T \\
C_{v} & =\frac{3}{2} R=12.5 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}
\end{aligned}
$$

Ist Law:

$$
\begin{aligned}
& \Delta Q=\Delta u+\Delta W \\
& \Delta Q=\Delta u=\frac{3}{2} n R \Delta T
\end{aligned}
$$

$$
\varepsilon \quad \Delta Q=n c_{v} \Delta T
$$

from eqü partion:
$u=\frac{3}{2} R T$ for monstonic ideal qus.

$$
\begin{aligned}
& \frac{1}{n} \frac{d u}{d T}=\frac{3}{2} \frac{R T}{n}=C_{v} \ldots f_{n} \text { I mole } \\
& C_{v}=\frac{3}{2} R T
\end{aligned}
$$

$C_{v}$

3 dof

5 dof

$$
\begin{aligned}
& \frac{3}{2} R T \\
& \frac{5}{2} R T \\
& \frac{7}{2} R T
\end{aligned}
$$



Table 9.1 Molar Heat Capacities for Selected Gases at $15^{\circ} \mathrm{C}$ and 1 Atmosphere

| Gas | $\boldsymbol{c}_{\mathrm{V}}(\mathrm{J} / \mathbf{K})$ | $\boldsymbol{c}_{\mathrm{V}} / \boldsymbol{R}$ |
| :--- | :---: | :--- |
| Ar | 12.5 | 1.50 |
| He | 12.5 | 1.50 |
| CO | 20.7 | 2.49 |
| $\mathrm{H}_{2}$ | 20.4 | 2.45 |
| HCl | 21.4 | 3 |
| $\mathrm{~N}_{2}$ | 20.6 | 2.57 |
| NO | 20.9 | 2.49 |
| $\mathrm{O}_{2}$ | 21.1 | 2.51 |
| $\mathrm{Cl}_{2}$ | 24.8 | 2.54 |
| $\mathrm{CO}_{2}$ | 28.2 |  |
| $\mathrm{CC}_{2}$ | 20.9 |  |
| $\mathrm{H}_{2} \mathrm{~S}$ | 2.9 | 2.98 |
| $\mathrm{~N}_{2} \mathrm{O}$ | 31.3 | 3.40 |
| $\mathrm{SO}_{2}$ |  | 4.92 |
|  |  | 3.06 |
|  |  | 3.42 |
|  |  | 3.76 |




Adiabatic Expansion of an Ideal Gas
a change that's QUICK or WELL INSULATED $\rightarrow Q$ neither learesnoventers "Adicbatiz"

$T$ decreases
U? decreases since $T \downarrow$


Since $\Delta Q=0$

$$
-\Delta u=\Delta w
$$

general
a tricky, point: $\Delta Q=n C_{v} \Delta T \Rightarrow n C_{v}=\underbrace{\left.\frac{\Delta Q}{\Delta T}\right|_{v}}_{\text {means "at }}=\left.\frac{\Delta u}{\Delta T}\right|_{v}$ constant volume"
or for infinitesimal changes

$$
n C_{v}=\left.\frac{d u}{d T}\right|_{v}
$$

for Ideal cases $u=u(T)$ only. $\frac{1}{4} \quad n C_{v}=\frac{d u}{d T}$ period

Bach to $1^{\text {st }}$ Low:

$$
\Delta Q=\Delta u+\Delta w \rightarrow d Q=d u+d w
$$

$$
\uparrow
$$

asiobatic
(A)

$$
0=d u+d w=u C_{v} d T+P d v
$$

for Ideal Gas: $\quad P V=$ URT
(B) $V d P+P d V=n R d T$
(B) $d T=\frac{V d P+P d V}{n R}$

$$
\frac{V d P+P d V}{n R}=-\frac{P d V}{n C v}
$$

(A)

$$
d T=-\frac{P d V}{n C_{V}}
$$

$$
\operatorname{PdV}\left(1+\frac{R}{C_{V}}\right)=-v d P
$$

but $c_{v}+C_{p}=R$
so $\operatorname{PdV}\left(1+\frac{c_{p}-c_{v}}{c_{v}}\right)=-V d P$

$$
\operatorname{PdV}\left(1+\frac{C_{P}}{C_{V}}-1\right)=-V d P
$$

Tcalled " $\gamma$ "

$$
\begin{aligned}
& P d V \gamma=-V d P \\
& \frac{d V}{V} \gamma+\frac{d P}{P}=0
\end{aligned}
$$

for a finite thermodynamic change $\rightarrow$ integrate

$$
\begin{aligned}
& \gamma \int \frac{d V}{V}+\int \frac{d P}{P}=0 \\
& \gamma \ln V+\ln P=\ln \text { (constant) } \\
& P V^{\gamma}=(\text { constant }) \quad \text { In an ideal gas }
\end{aligned}
$$



$$
P_{i} V_{i}^{\gamma}=P_{f} V_{f}^{\gamma}=\text { coustant } \equiv K
$$

(A) $d T=-\frac{P d V}{n c_{V}}$

$$
W=\int_{V_{i}}^{V_{f}} P d V=\int_{T_{i}}^{T_{f}}-n C_{v} d T
$$

$$
P=\frac{K}{V}
$$

$$
W=\int_{V_{i}}^{V_{f}} \frac{k}{V^{\gamma}} d V=\frac{1}{1-\gamma}\left(K V_{f}^{1-\gamma}-k V_{i}^{1-\gamma}\right)
$$

Adiabatic transitions ave special... Line Goldilocks

Be fast enough to not lose heat
Be slow enough to uni form throughent
just right

Gasoline $\xi$ Diesel engine strokes ave ~adiabatiz

compression stroke is fast - no heat leaves $\gamma>1$ so a boost in changing pressure Courses sion ratio... $15 / 1$ or ss


$$
\begin{aligned}
& P_{i} V_{i}^{\gamma}=P_{f} V_{f}^{\gamma} \quad \gamma=1.4 \text { in air } \\
& P_{f}=P_{i}\left(\frac{V_{i}}{V_{f}}\right)^{\gamma}=P_{i}(15)^{1.4} \sim 44 P_{i} \Rightarrow 44 \text { atm. if } \\
& P_{i}=\text { air }
\end{aligned}
$$

If no molecules escape?
Frown the Ideal gas law non car suns: $T_{f}=T_{i}\left(\frac{U_{i}}{V_{f}}\right)^{\gamma-1}$

$$
T_{f}=T_{i}\left(\frac{V_{i}}{V_{f}}\right)^{\gamma-1}=3 T_{i}\left\{\begin{array}{l}
T \cong 300 K \\
\downarrow \\
T=900 K
\end{array} \quad \begin{array}{l}
\text { ignite } \\
\text { diesel } \\
\text { fuel }
\end{array}\right.
$$ in fact, do that next time D3

standard plusical exauple:

adrahatic not isothermal

work aqainst wall
fitest pressure ... isune $T$

$$
\begin{aligned}
P_{0} V_{0}^{\gamma} & =P V^{\gamma} \\
P & =P_{0}\left(\frac{V_{0}}{\bar{V}}\right)^{\gamma} \\
P & =1 \mathrm{~atm}\left(\frac{2}{4}\right)^{1.4} \\
P & =0.38 \mathrm{~atm}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { aiv: } \gamma=1.4 & \\
V_{0}=2 \mathrm{~L} & V_{f}=4 \mathrm{~L} \\
T_{0}=20^{\circ} \mathrm{C} & T_{f}=? \\
P_{0}=1 \mathrm{~atm} & P_{f}=?
\end{array}
$$

temperature ...isume $P$

$$
\begin{aligned}
T_{0} V_{0}^{\gamma-1} & =T V^{\gamma-1} \\
T & =T_{0}\left(\frac{V_{0}}{V}\right)^{\gamma-1} \\
& =293\left(\frac{2}{4}\right)^{0.4} \\
T & =222 \mathrm{~K}=-51^{\circ} \mathrm{C}
\end{aligned}
$$




Making it reals
finite size:
$b$-volume of molecules $\quad V \rightarrow v-b$ shert-distance attraction:

$$
\begin{aligned}
& P \rightarrow P+a / v^{2} \\
& \left(P+\frac{a}{v^{2}}\right)(v-b)=n R T
\end{aligned}
$$

Sander hals Equation $a, b$ measured.


