WAVES
Review (?) of mechanical wares
STRING THEORY?

Shunt section: T constant at both ends, but angles swoflth different
Vertically:

$$
\begin{aligned}
& \left(F_{\text {net }}\right)_{y}=T \sin (\theta+\delta \theta)-T \sin \theta \\
& f_{n} \operatorname{swall} \theta \quad \sin \theta \sim \tan \theta=\frac{\partial y}{\partial x} \rightarrow \text { slope at } \\
& \text { point } x
\end{aligned}
$$

y aves up and dom in time \Rightarrow transverse velocity $\frac{\partial y}{\partial t}$

$$
\left(F_{\text {net }}\right)_{y} \cong T\left[\left(\frac{\partial y}{\partial x}\right)_{x+\Delta x}-\left(\frac{\partial y}{\partial x}\right)_{x}\right]
$$

which wanes yon think "derivative"...

$$
\frac{\left(F_{\text {net }}\right)_{y}}{\Delta x}=T\left\{\frac{\left(\frac{\partial y}{\partial x}\right)_{x+\Delta x}-\left(\frac{\partial y}{\partial x}\right)_{k}}{\Delta x}\right\}
$$

ta ne limit $\Delta x \rightarrow 0$

$$
\lim _{\Delta x \rightarrow 0} \frac{\left(\frac{\partial y}{\partial x}\right)_{x+\Delta x}-\left(\frac{\partial y}{\partial x}\right)_{k}}{\Delta x}=\frac{2}{\partial x}\left(\frac{\partial y}{\partial x}\right)=\frac{\partial^{2} y}{\partial x^{2}}
$$

The of position is $y(x, t) \ldots$

$$
\left(F_{\text {net }}\right)_{y}=T \frac{\partial^{2} y}{\partial x^{2}} \Delta x
$$

$$
\left(F_{\text {net }}\right)_{y}=T \frac{\partial^{2} y}{\partial x^{2}} \Delta x
$$

The mass of that chunk is $m=\mu \Delta x$ \uparrow vas / length
From Neutoris zed:

$$
\begin{aligned}
& \left(F_{\text {net }}\right)_{y}=\sum F_{y}=m a_{y} \\
& T \frac{\partial^{2} y}{\partial x^{2}} \Delta x=\mu \Delta x \frac{\partial^{2} y}{\partial t^{2}}
\end{aligned}
$$

so

$$
\begin{aligned}
& \frac{\partial^{2} y(x, t)}{\partial x^{2}}=\left(\frac{\mu}{\bar{T}}\right) \frac{\partial^{2} y(x, t)}{\partial t^{2}} \\
& {\left[\frac{M}{T_{\text {en }}}\right]=\frac{[M / L]}{\left[\frac{M L}{T_{\text {imp }}^{2}}\right]}=\frac{T_{\text {wm }}^{2}}{L^{2}}=\left[\frac{1}{v}\right]^{2}}
\end{aligned}
$$

so that term is the inverse of the $\hat{\imath}$ velocity
... In an actual, material wave, its (mass/length $\frac{\text { tension }}{\text { tin }}$)

Ta Da:

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}} \text { is THE WAVE EQUATION }
$$

Red solutions: $\quad y(x, t)=A \sin \frac{2 \pi}{\lambda}(x \pm v t+\delta)$
¿ phase depends on where $t=0$, set $\delta=0$.
traveling waves $\quad y(x, t)=A \sin ^{2} \frac{\pi}{\lambda}\left(x_{ \pm} v t\right)$

(Q $t=t_{1}$

$$
t=t_{1}
$$

tout $y_{1}=y_{2}$ so:

$$
\begin{aligned}
x_{1}-v t_{1} & =x_{2}-v t_{2} \\
v & =\frac{x_{2}-x_{1}}{t_{2}-t_{1}}>0 \quad \text { since } x_{2}>x_{1}
\end{aligned}
$$

the - sign \Rightarrow wove morning R16tt

and

$$
\begin{aligned}
y(x, t) & =A \sin 2 \pi\left(\frac{x}{\lambda}-\frac{v}{\lambda} t\right) \\
& =A \sin 2 \pi\left(\frac{x}{\lambda}-f t\right)
\end{aligned}
$$

$$
y(x, t)=A \sin (h x-w t)
$$

at a given x_{1}, the ware is manning \uparrow
$T=$ period, time fun 1 vibration

$$
\begin{aligned}
& \frac{1}{T}=\text { rate of vibration }=\text { frequency. } \\
& f=\frac{1}{T} \quad \text { so } \quad \lambda=v T
\end{aligned}
$$

$v=f \lambda \equiv v_{p}$ "phase velocity"

Standard definitions:

$$
\begin{aligned}
& h=\frac{2 \pi}{\lambda} \text { "wave number " } L^{-1} \\
& \omega=2 \bar{u} f \text { "angular frequency" } T^{-1}
\end{aligned}
$$

$$
u_{p}=f \lambda=\left(\frac{\omega}{2 \pi}\right)\left(\frac{2 \pi}{h}\right)=\frac{\omega}{h} \text { phase veloint }
$$

advance $\delta=\frac{\pi}{2} \quad y(x, t)=A \sin (h x-\omega t+\pi / 2)=A \cos (h x-\omega t)$

2 waues: Superposition

$$
\begin{aligned}
& y=y_{1}+y_{2} \\
& =A \cos \left(h_{1} x-\omega_{1} t\right)+A \cos \left(h_{2} x-\omega_{2} t\right) \text { same } A \text {, diffenent } \lambda \leqslant T \ldots \\
& \cos a+\cos b=2 \cos \frac{1}{2}(a-b) \cos \frac{1}{2}(a+b) \\
& y=2 A \cos \frac{1}{2}\left\{\left(h_{2}-h_{1}\right) x-\left(\omega_{2}-\omega_{1}\right) t\right\} \cos \left\{\frac{h_{1}+h_{2}}{2} x-\frac{\omega_{1}+\omega_{2}}{2} *\right\} \\
& \Delta h=h_{2}-h_{1} \\
& \Delta w=w_{2}-w_{1} \\
& \bar{h}=\frac{h_{1}+h_{2}}{2} \\
& \bar{\omega}=\frac{\omega_{1}+\omega_{2}}{2}
\end{aligned}
$$

The envelope has a $v_{G}=\frac{\Delta \omega}{\Delta k} \quad .$. the original waves, y_{1} and y_{2} continue to have their ovignd

$$
v_{p_{1}}=\frac{\omega_{1}}{h_{1}} \text { anal } v_{p_{2}}=\frac{\omega_{2}}{\bar{h}_{2}}
$$

The whole system mores with modulation
 G is called a "wave packet"
Mathematical

$$
y=2 A \cos \{\underbrace{\left.T \frac{\Delta h}{2} x-\frac{\Delta \omega t}{2}\right\}}_{G} \cos \{\bar{h} x-\overline{\omega t}\}
$$

For a given time, the envelope is localized between x_{1} and x_{2} when

$$
\begin{aligned}
& \frac{\Delta h}{2} x_{2}-\frac{\Delta h}{2} x_{1}=\pi \quad \Delta x=x_{2}-x_{1} \\
& \Delta h \Delta x=2 \pi
\end{aligned}
$$

At a given position

$$
\Delta \omega \Delta t=2 \pi
$$

Fine-quained localization $\Rightarrow \Delta x$ swall $\Rightarrow \Delta k$ must be lang.

Until this point... ovey 2 waves.
a thue wavepachet win elear "edacs" avel Rocalizetion requines many.
From $\quad v_{c}=\left.\frac{\Delta w}{\Delta h} \rightarrow \frac{d w}{d n}\right|_{n .}$
'central wavenumber of lots of h 's
In seneral $w=h u_{p}$

$$
v_{G}=\left.\frac{d \omega}{d h}\right|_{h_{0}}=\left.v_{p}\right|_{h_{0}}+\left.h \frac{d u_{p}}{d h}\right|_{h_{0}}
$$

councution between v_{c} and v_{p}
velority dopends on wave number ... on wavelength
\rightarrow dispersion
eq qlass $n(\lambda)$

$$
\int \rightarrow>
$$

A couple of way p...

$$
y(x, t)=\sum_{i} A_{i} \cos \left(k_{i} x-\omega_{i} t\right)
$$

Fourier Series
or in a continuous spectrum

$$
y(x, t)=\int \tilde{A}(h) \cos (h x-\omega t) d h
$$

Fourier Integral
or for mroutical reasons..

$$
y(x, 0)=A e^{-\Delta k^{2} x^{2}} \cos \left(h_{0} x\right)
$$

Gaussian wave pocket

Whet about quautum plisics youie asking?

$$
E=h f=\frac{h \omega}{2 \pi}=\hbar \omega \Rightarrow \quad E=\hbar \omega
$$

de Brogle

$$
\xrightarrow[\text { assumption }]{\text { deBroqte }} p=\frac{h}{\lambda}=h \frac{h}{2 \pi} \quad \Rightarrow \quad p=\hbar k
$$

Graus velocity:

$$
\begin{gathered}
v_{p}=f \lambda=\frac{E}{h} \frac{h}{p}=\frac{E}{p} \\
E=\sqrt{p^{2} c^{2}+m^{2} c^{4}} \\
v_{p}=\sqrt{\frac{p^{2} c^{2}+m^{2} c^{4}}{p^{2}}}=c \sqrt{1+\left(\frac{m c}{p}\right)^{2}} \\
v_{p}=c \sqrt{l+\left(\frac{m c}{\hbar h}\right)^{2}}=v_{p}(h)
\end{gathered}
$$

$$
u_{p}=c \sqrt{l+\left(\frac{m c}{\hbar h}\right)^{2}}
$$

now: $\quad v_{G}=\left.v_{p}\right|_{h_{0}}+\left.h \frac{d v_{p}}{d h}\right|_{h_{0}}$

$$
\overline{v_{G}}=\frac{c}{\sqrt{1+\left(\frac{m c}{\hbar h}\right)^{2}}}=\left.\frac{c^{2}}{v_{p}}\right|_{k_{0}} \quad \text { hmm }
$$

Classical

$$
\lambda=h / m_{0} v
$$

delbroalic:

$$
\begin{array}{rlrl}
v_{p} & =f \lambda \\
& =\frac{E}{h} \cdot \frac{h}{p} \quad E=h f \quad p=\frac{h}{\lambda} & E^{2}=p^{2} c^{2}+m_{0}^{2} c^{4}=\left(m c^{2}\right)^{2} \\
v_{p} & =\frac{E}{p}=\frac{m c^{2}}{m v}=\frac{c^{2}}{v} & p=m_{0} \gamma v=m v
\end{array}
$$

BUT WE JUST FOUND
GROUP VELOCITY = PARTICLE VELOCITY

$$
v_{G}=\frac{c}{\sqrt{1+\left(\frac{m c}{\hbar n}\right)^{2}}}=\frac{c^{2}}{v_{p} / k_{0}}
$$

Think of a "particle" with mechanical velocity as represented by a wave packet with group velocity

HOW DO WE KNOW THAT SOMETHING IS... must "look" at it.
generalized "eyes".- detect n

object

Now... our object and pishe are both particles waves
imagine object is ting.. an electron

$$
\frac{\hbar}{6}
$$

prose is light

But, hold the
Light is also a particle

$$
p=\frac{h}{\lambda}
$$

\longleftarrow smaller the $\lambda \ldots$ higher the momentum ip

Location of an electron:
How well do yon know that it's here
 and not here?
using light?

Heisenberg thought experiment

to see it, the scattered γ must be: $-\theta$ to θ _ $\Delta \theta=2 \theta$
\downarrow
Lichs election w/ P_{x} between
$\Delta p=+\frac{h}{\lambda} \sin \theta$ to $-\frac{h}{\lambda} \sin \theta$
pansical optics sap smalent Δx :

$$
\begin{gathered}
\Delta x=\frac{\lambda}{2 \sin \theta} \\
\Delta x \Delta p=\frac{\lambda}{2 \sin \theta} \cdot \frac{2 h}{\lambda} \sin \theta=h
\end{gathered}
$$

cant use anything less than 1 puritan... were stuck

Heisenberg Uncertainty Principle

$$
\Delta p \Delta x \geq \frac{\hbar}{2}
$$

$$
\frac{1}{2}
$$

$$
\Delta E \Delta t \geq \frac{\hbar}{2}
$$

- promaties of all waves
- de Broglie makes it seem strange

A few yeurs agp...
pulked over for domp $105 \mathrm{mph}^{*}$ State potice vodar: $\sim 20 \mathrm{GHz}, \lambda \sim 14 \mathrm{~cm}$ Could he vesobe my sqeed? Really?

$$
\begin{array}{rl}
\Delta x \Delta p \geq \frac{\hbar}{2} & \Delta p=m \Delta v \\
\Delta p=\frac{\hbar}{2} \Delta x & m \cong 1500 \mathrm{kq} \\
\Delta v m=\frac{\hbar}{2 m \Delta x}= & \\
\Delta v=\frac{\hbar}{2(\Delta d)(m)}= & \frac{1.05 \times 10^{-34} \mathrm{~J} .5}{2(0.14 \mathrm{~m})(1500 \mathrm{kq})} \\
\Delta v & \approx 3.5 \times 10^{-37} \mathrm{~m} / \mathrm{s}
\end{array}
$$

* it wes amither blach BMW... not me!

Elcation in 1st Bohr oubit... $^{\text {St }}$
vewarber, I cabulatad $\quad v \simeq 2 \times 10^{6} \mathrm{~m} / \mathrm{s}$
colulate $\triangle E$

$$
\begin{aligned}
& \Delta x \Delta p \geq \frac{\hbar}{2} \\
& \Delta x=\frac{\hbar}{2 \Delta p}=\frac{\hbar p \sim m v}{2 m v}=\frac{1.05 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{(2)\left(9 \times 10^{-31} \mathrm{hq}\right)\left(2 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)} \\
& \Delta x=3 \times 10^{-11} m=0.3 \AA \sim a_{0}
\end{aligned}
$$

