ISP220

QUARKS, SPACETIME, AND THE BIG BANG

Eric Clapton

Run Number: 201269, Event Number: 80898559

Date: 2012-04-14 22:30:13 CEST

to ISP220

Quarks, Spacetime, and the Big Bang

to ISP220

Quarks, Spacetime, and the Big Bang

to ISP220

Quarks, Spacetime, and the Big Bang

Because we'll spend a lot of time on Einstein's theories of Relativity

to ISP220

Quarks, Spacetime, and the Big Bang

Because we'll talk about the beginning of the Universe

isp220 studies:

the largest

and

the smallest

entities of all

the largest?

Cosmology

the smallest

particle physics

So.

A course on particle physics?

"hmm. I think I've heard that before..."

yes, that one

some artistic license

the real control room

somehow our experiment

generates attention

research university

science faculty have dual duties

teaching

research

who pays taxes?

thanks.

the real "why"

It's a privilege to actually receive a salary to do this work.

You graciously pay for our research and I'd like you to be able to appreciate the results and its future.

I'd like to tell you about it.

chip brock

university distinguished professor

I am an experimental Particle Physicist and a member of the faculty of Michigan State University

www.pa.msu.edu/~brock/

you're participating in a century-old, uniquely American college experience

Abbott Lawrence Lowell, Harvard President 1909:

"A discussion of the ideal college training would appear to lead to the conclusion that the best type of liberal education in our complex modern world aims at producing men who know a little of everything and something well."

"General Education"

...at MSU: Integrative Studies

look at the goals of the Center for Integrative Studies in General Science:

http://cisgs.msu.edu/about.html

you're not physicists, so I know that you're

brave and fearless to take this course.

my goals for you

To learn of discoveries, theories, and puzzles in particle physics and cosmology

To learn some visualization tools and apply them to understanding some experimental and theoretical techniques

To meet some of the historical and contemporary physicists who built both of these fields

lots of moving parts

in ISP220

sorry.

about those videos

still no clue what's going on
I'll take them down for now
dept and MSU IT working on it

QS&BB in 3 parts

Part 1

"classical physics"

motion, forces, momentum, energy, electricity, magnetism, waves, electromagnetism

up until ~mid February Part 2

relativistic physics

special relativity

general relativity

20th century cosmology

quantum mechanics

+ relativity

particle physics

current cosmology

a combination of sources

I'll lecture

You'll read the texts

You'll read some on-line material

You'll watch some videos

sign posts along the way

periodic, in-line questions:

We'll be able to do this many times for many different circumstances. Yard acreage or even speeds seem obvious, but we'll encounter more complicated ideas for which this geometrical thinking will actually lead to physics-insight.

That me I'm a doctor.

Please answer a question:

algebra and geometry

I'm impressed by this sort of thing. Look what we did. We took our intuitive notion of a constant speed in an English paragraph, turned it into a simple algebraic equation, and then turned that into a graph that will give our location at any point ito the physics by thinking of our speed iappens often—some algebra leads to a scovery!

some videos:

get out your pencil:

Let's work out the most important one of these and get to know it. It's inventor?

Why Mr Newton, which should be a surprise to no one.

Let's develop the simple machinery from Newton's ideas. Remember the impulse model...let's enjoy that one again:

$$\vec{F\Delta}t = \Delta \vec{p}$$
. (impulse)

The momentum change of an object is equal to the force that alters its motion times the time through which that force acts. Think about what happens when object A collides with object B. Let's imagine that A is your left hand and B is your right hand. Now give Huygens a big hand (shall we?) and clap them together, like Collision 3.

Part 1 primary source

All of Part 1 content

- 1. we'll call it: "QS&BB"
- 2. videos in support, section by section

OS&BB

Ouarks, Spacetime, and the Big Bang

1. Hi.

Welcome to the detailed content of Quarks, Spacetime, and the Big Bang.

The subject chunks of QS&BB are segmented into individual "lessons." Each is a topic on its own, although most lessons will assume familiarity with the previous ones. You can get back to this page by going "home" in the sidebar.

1.1 Outline of Lessons

A Little Bit About This On-line Text

Why we're doing this!

Lesson 1. Once Upon a Time...

...there was a tiny fluctuation in spacetime

Lesson 2. What Can We Know, and How?

Science is a thing. Different from other things. How?

Lesson 3. Mathematics, The M Word

A tiny bit of mathematics. Really.

Lesson 4. Motion, Getting From Here to There

You like to move it move it. Move it.

Lesson 5. The Big Mo, Force and Momentum

What Newton brought

Lesson 6. Collisions, Banging Things Together

Collisions and Conservation of Momentum

Lesson 7. Energy, It Just Keeps Going and Going

Never enough. Always just enough.

Lesson 8. Early Cosmology

Round 1. Wrestling With the Planets

Lesson 9. The Astrophysics of Galileo and Newton

Cosmology of Galileo and Newton

Lesson 10. Charge It! Charges and Magnets

Electric charges, magnets, and currents.

Lesson 11. Faraday's Experiments

Electricity and Magnetism together

Lesson 12. Faraday's E&M Fields

The field idea

Lesson 13. Maxwell's Fields

Electromagnetic Waves

let's take a look at QS&BB text

resources

text books

http://www.chipbrock.org

Facebook Group

MasteringPhysics

MasteringAstronomy

blogs and websites

other materials...

use this for free:

maybe buy this:

amazon

All 🕶

maybe buy this:

part 1 schedule

Part 1: By Tuesday & Thursday

You should read the Lesson assigned to that particular day. The in-line reading questions will close.

Part 1: During Tuesday & Thursday

gentle quiz on reading

demonstrations relevant to the lesson

some in-class guided questions to work together

an in-class exercise that you can work out together

Homework: every 2 weeks

one caveat

GreatRiverLearning

approached me about writing an on-line textbook

let's look

beta test 1 lesson

GreatRiverLearning

https://www.grtep.com

one lesson

Lesson 5, for next Tuesday

try it

your homework will be absorbed into their system and I'll retrieve it as a spreadsheet

evaluate it at the end of the lesson

and I'll give you some spartycash or a new car or something

I have codes for you to get in for free...

Charlent Name	Access Code		
Student_Name	Access Code		
Ahmed, Zachary Mohamed	CSXXH-CPT9G-P4XZH-23BGF		
Allen, Ryan Herrick	CSC47-TFTHT-3RGMC-CK66V		
Chapman, Lauren Michelle	CSSR2-V42FK-3RXXR-PXM76		
Christensen, Connor James	CS7SN-PPF9R-3492F-MZXBB		
Clemons, Alexis Taylor	CSKZZ-Z4T2R-36RVH-FNF98		
Contreras, Armando	CSDFX-C3FT3-BSCKZ-NVGMM		
Coombs, Louis William	CSKCD-FCD6V-DV6H2-4R3HB		
Coulter, Holly Lane	CS7KX-D9S76-3T988-ZBCXV		
Dekoning, Case Hendrik	CSZBX-XKGKS-3B8DR-R8PTF		
Derozier, Clea Marie	CSMVK-4DTGS-87FS9-DTDKF		
Deschenes, Eric James	CSSHM-4FXN7-4VXVC-TRPNR		
Dickens, Brady Dean	CSFG9-Z2B82-ZRB36-NGC78		
Do, Sara	CSHK3-VDP8T-FBVTK-S8PS6		
Erben, Hannah Marie	CSCH7-66T8G-H6M36-PZPVH		
Farrell, Alayna Nicole	CSGHT-7MB4F-9NX33-V62D3		
Fineout, Kael Hu	CSHK3-R8TMR-BRGV8-7242P		
Finneran, Tommy	CSTDB-M289C-F3DG4-G4PBP		
Fitzgerald, Patrick Robert	CSS66-XHRB8-K3XHM-6M8XD		
Francis, Tyler Thomas	CSKZD-NPPGR-C4K4C-S8FD3		
Freitag, Christian Alexander	CS9TP-7MRM7-64FM9-GD6ZH		
Gagnon, Lauren Marielle	CS2SP-KDFBH-DH3R6-KBKRP		
Gilaj, Alton	CSBPS-RN2BX-S429H-GKMSS		
Graham, Heather Marie	CSMDK-4MP3M-SVHCC-HB3BZ		
Hartley, Nate	CS6SF-HXS32-3R6T7-PCHRH		
Haywood, Kayla Marie	CSPFT-CRSDD-KHKFF-3S9RZ		
Howard, Jack	CSS6Z-3S3VN-4RP94-FNS6H		
Irwin, Avery Eib	CS677-M4S7F-BS8BN-PPXGG		
Jenkins, Brendan Alan	CS82P-648HK-NKKBV-FNZV8		
Johnson, Marcus Wheland	CS3DK-2HPXR-9RB62-7RMK4		
Judd, Monica Rene	CSNMN-MD2Z9-2CN2Z-24ZP7		
Koretz, Sam	CS7G4-ZS4C4-DNSS4-PGRR3		
Kramer, Eli Bernard	CSFSC-P2BGR-NNMVV-24RMD		
Lim, Nick	CSTNM-K27ZH-KXFMS-73KRZ		
Lozano, Gabe	CS63B-NG7CG-F43XF-MMF8H		
Manchester, Ian Ronald	CSXR7-Z4T66-FK6TT-DM4P9		
Mastroianni, Lia Marie	CSX26-P3NSF-V9RRN-RCSNX		
Moloughney, Ryan Joseph	CSZ8R-862RS-4DCD3-79SVR		
Montroy, Katie	CSTRP-CNR3S-34N3T-KCMXB		
Morello, Caden Michael	CSSC8-F9PGP-TKZ2X-B7T3R		
Murden, Brenden	CSPFD-SGM2B-6K7D2-TG2VX		
Oconnell, Emma Kay	CS6MP-T6S4D-KHN9M-ZH7DS		
Orr, Nick	CSNB2-TT2CB-M7PF3-PGZCM		
Quiazon, Carlo	CSP7X-TX3TS-6KSTT-43RSV		
Reynolds, Dana Lynn	CSN23-ZBVH3-6TB44-D29XF		
Ritter, Blake Mcleod	CSR8Z-6C2T6-G3N96-D9HHV		
ter, blake Mereda	3332 33213 331130 B3111V		

Ross, Chyna Alexis	CSMR8-7VN9X-KTK86-Z2SD9
Saunders, Lorie Ella	CSB94-6CMV8-C447Z-H8N3M
Schubert, Alyssa Marie	CS74D-MPMNB-C74HK-BMK26
Shipp, Leah Mason	CSSRV-KDNCK-K3GKF-S3B84
Steenland, Julia Bove	CSPV6-363VB-Z972P-TFGNM
Sun, Zhiwei	CSHBF-K6K7B-64GGP-9XDN3
Tate, Jalen Davis	CSDGP-HMT9M-SSNT8-44HMC
Thakur, Sidharth	CSH8K-7VH3N-36DHZ-M3ZHH
Thomas, Tim	CSR4K-BBZ2C-ZND3K-ZRGFK
Torres, Ashley Ciera	CS7BM-978ZX-FB3TK-DG3RN
Trinh, Belinda Ngoc	CSZRC-HC437-VXXDT-NF93D
Varady, Brad	CSSDR-VBTDG-4333X-9S3HT
Watson, Daryn Nicole	CSVFF-CXDVB-HR7RC-VNTDN
Weinstein, David Joshua	CSD72-6DK8C-Z2VP8-P8XGP
Wells, Kayla Elizabeth Marie	CSS4T-VBKPR-BZX87-7N2RD
Wu, Cindy	CS8KP-G9286-4ZM8N-C2642
Xiong, Jiaxuan	CS2SV-4XX28-T4X99-P3994
Zhang, Yifei	CSM98-73BN4-9BH8C-KZ346
Andrews, Benjamin	CSBCG-C2PH6-9B79R-RK64F
Bassett, Mark Francis	CSTG7-6TF8C-6SZXR-KZ38N
Burdick, Caroline N	CSNRR-7V8G2-9GDNN-HZTC2
Cismesia, Nadia R	CS3TD-8DD4G-TFZ46-C4RTM
Crosser, Madison Marie	CSGNX-74XM8-BMSB6-GMZHD
Czajka, Brenden Michael	CSDMZ-RGFXX-MXP62-ZGGZN
Delgado, Antonio Christopher	CSDGZ-KCPRG-46K2G-FZRBM
Eberle, Alison Reine	CSCNH-6M3HF-27VCD-K9XG2
Feldman, Jacob Matthew	CSMB6-268PB-VCXMG-2S9Z2
Garcia, Matt	CSZNP-KFG4F-CBBX8-TVBVZ
Gettel, Justin Andrew	CSSMG-4FGHR-TBCK6-SMX9P

Hix, Natalie Violet	CS3TH-3KF29-HZCBH-4K7XK
Hobson, Alyssa Jordan	CS47M-DKPSF-FMNZ8-3FPN2
Huang, Qi	CS2BP-2F4MH-SHTCV-6X9RZ
Kada, Myrna Mahir	CSGGX-SKG2F-S7VTX-PMZS2
Lintol, Sydney Marie	CSFN8-82FDT-HXGFG-MKR4H
Maceri, Tommy	CSNNV-M6BDC-P39SZ-MDDKS
Mccallum, Erin Margaret	CS2HZ-T6DGV-4D44N-FSV4H
Mezaache, Kristin Nicole	CST49-9DT6P-SRN3R-NBTH8
Olweean, Danny	CS7RF-DK7R2-XPGNT-KBHM3
Poe, Jeralyn Megan	CS3B9-7S2MD-XZ9XV-6CR2D
Richard, Bre	CSN89-Z2CPP-M3V78-HV397
Rodas-Mazariegos, Paulo Gerardin	CS8BB-7XXZ7-RVBF6-PBS39
Stallings, Peyton Christine	CSC6X-PNCCF-PZF6C-FVNFX
Steffke, Madeline May	CST3P-GSRB3-KXF44-P8NPG
Warner, Mikayla Erin	CS43X-HXKN9-R78ZG-B62F2
	CS8N6-M3HNC-G2DF3-6VF64

I've also uploaded it to:

https://qstbb.pa.msu.edu/storage/QS&BB2019/Homework_Projects/

part 2 schedule

Part 1 "classical physics" motion, forces, momentum, energy, electricity, magnetism, waves, electromagnetism Part 2 relativistic phys special relativity quantum mechanics + relativity particle physics current cosmology

Part 2: During Tuesday & Thursday

lectures: just like the 13th century

random quizzes on reading/ attendance

demonstrations

Homework every week

released on Saturday, due the following Friday

let's go there

your contributions

simple in-line reading questions from Part 1 QS&BB simple on-line homework

2 on-line exams, like homework

readabook: from a list, choose a book to carefully read and review

a final-exam project done in groups

announced and unannounced quizzes

some extra stuff you can do for points

read the syllabus carefully

two kinds of points:

Core Base Points

Source	max #	pts per	total possible
homework: during Part 1	3	30	90
homework: rest of semester	10	30	300
exams	2	60	120
reading questions: during Part 1	9	30	270
book review	1	20	20
Feynman Diagram Final	1	20	20
in-class projects: during Part 1	5	15	75
early quizzes: during Part 1	5	5	25
random quizzes	4	10	40
random attendance	2	5	10
Total			970

Extra Credit Points Available

Source	max #	pts per	total possible
another book review	1	20	20
reading notes	5	10	50
Big Questions	2	10	20
fakefacebook bio	1	20	20
final day poster	1	20	20
Total extra			130

read the syllabus carefully

grades

notice that it's based on the core points:

projects add

bookmark:

http://www.facebook.com/groups/gsandbb/

QS&BB Facebook Group...by invitation only

http://www.chipbrock.org course website https://qstbb.pa.msu.edu/ed/ "the book" "QS&BB" https://qstbb.pa.msu.edu/storage/QS&BB2019/videos_2019/ the videos https://gstbb.pa.msu.edu/storage/QS&BB2019/isp220_slides_2019/ the ftp site where I'll store all lecture slides https://qstbb.pa.msu.edu/storage/QS&BB2019/Homework_Projects/ periodic homework and project materials http://www.pearsonmylabandmastering.com/northamerica/masteringphysics/ MasteringPhysics https://www.pearsonmylabandmastering.com/northamerica/masteringastronomy/ MasteringAstronomy https://loncapa.msu.edu LON-CAPA, reading questions in Part 1 and repository of projects throughout

the M word

When I took high school Latin

I was not required to write original works in Latin

but I was required to be able to read Latin

That's how we'll use mathematics in QS&BB

read an algebraic "sentence" or "paragraph" in order to gain insight

I assume

that you went to high school

and that you can manage simple algebra and scientific notation

remember: $4,000,000 = 4 \times 10^{6}$? $0.000004 = 4 \times 10^{-6}$?

can you solve for
$$x$$
: $y = mx$ $y = a\sqrt{b+x}$ $y = ax^2$?

you're good

see QS&BB, Lesson 3 for review

how to get ahead

come to class

do the work

use your hands.

my experience

about learning anything involving logical reasoning

how I do it, even today

you can't "read" mathematics

you must copy it. with your fingers

remember?

Let's work out the most important one of these and get to know it. It's inventor?

Why, Mr Newton, which should be a surprise to no one.

Let'd develop the simple machinery from Newton's ideas. Remember the impulse model...let's enjoy that one again:

 $\vec{F\Delta}t = \Delta \vec{p}$. (impuls

The momentum change of an object is equal to the force that alters its motion times the time through which that force acts. Think about what happens when object A collides with object B. Let's imagine that A is your left hand and B is

SO

bring a notebook to class

no computers, phones, iPads, or fraternity brothers

how I'd do your job

come to class

watch and listen to lectures and demonstrations

take brief notes

if something goes by quickly—jot the slide # and look later

if it still bothers you, ask and maybe I'll make a movie

when I go to the tablet...write with me

you've got friends

check the website for my office hours

in-person and virtual (Skype and Facebook)

and for those of our TA:

Katie Schram

in-person and virtual (Facebook)

how to get ahead

come to class

do the work

use your hands.

you'll be fine

let's get to work

some random notions

How I think of you and me

Laws, Theories, and Models

A fly-over of QS&BB

How I think of you and me

you

you're not likely going to be a professional scientist I'd like you to become a knowledgable spectator

"You can observe a lot by just watching." Yogi Berra

July 13, 1965 MLB All Star Game

me

some hate the "great man" history of science

I understand it perfectly

July 13, 1965 MLB All Star Game: 19/500 future Hall of Fame

Laws, Theories, and Models

ask me

about Florida

The L word

"Law"

don't like it.

there are no "Laws" of nature

Florida's example of a Law of Nature was:

Newton's <u>Law</u> of Gravitation:

 $F_{12} = G \frac{M_1 M_2}{R_{12}}$

Newton's theory of Gravitation

Newton's law of Gravitation

Theories

It's all theories, all the way down

better word: "framework"

The Theory of Relativity is ...a theory

Acceptable theory

highly trusted

we don't "believe" in theories of nature

we test them and we question them

models

Mother Nature seems to be a mathematician

we have no idea why

it just is

A model is a mathematical "algorithm" built within the confines of one or more theories

not mean to be perfect

Goldilocks-acceptable

matched to need and testability

a well-know problem

Cow Tipping...what's it take for high school boys to tip a cow?

Go tip cows? Make a model.

a model

I can draw free-body diagrams and make a model of walking

A Dynamic Walking Model

B Dynamic Walking Human

I can draw free-body diagrams and make a model of walking

But it's not the actual physiology of walking!

20th century physics

was interesting

3 theories developed

Special Relativity

General Relativity

Quantum Mechanics

many, many models of phenomena

"Standard Model of Particle Physics"

"Standard Model of Cosmology"

QS&BB

is all about them

the 3 theories

the 2 big models

what we don't know

Lots.

what banged?

gravity and quantum mechanics don't mix

much of the universe is missing neutrinos behave very strangely where is all of the antimatter?

do the forces unify?

idiosyncratic

introduction alert

you're asking yourself

So, self. How is this relevant to my life?

after all, you're happy being a collection of

protons, neutrons, and electrons

(or just up and down quarks)

let's make this

all about you

your-self

intricately bonded to particles and the cosmos

Made from nuclear fusion in stars.

Made in nuclear fusion in exploding stars.

Made in the big bang.

The body: about 7×10^{27} atoms 65% of that is H: 13.772By old

assume 70kg:

 4.2×10^{28} protons

 4.2×10^{28} electrons

1.4 × 1028 neutrons \ water alone

a little chemistry factory

think about water.

suppose

the electron mass was few % lighter?

all of chemistry changes
the BB's production of H changes
formation of stars changes

a little radioactivity factory

those trace inorganics?

a little radioactivity factory

those trace inorganics?

a little radioactivity factory

you internally expose yourself about 4 X-rays' worth per week

about an X-ray per week

so just sitting there

You're experiencing much of particle physics:

antimatter

neutrinos

muons

fine tuning of masses* so that chemistry works

dark matter

relic big bang radiation

take a proton

made of 3 particles: "quarks," 2 "up" and 1 "down"

so just sitting there

You're experiencing much of particle physics:

antimatter

neutrinos

muons

vacuum particle production

dark matter

relic big bang radiation

Higgs Field

gluons

Einstein's special theory of relativity

did you dry your hands

in the fancy air-driers?

it turned on because of Quantum Mechanics

existing so just sitting there

You're experiencing much of particle physics:

antimatter

neutrinos

muons

vacuum particle production

dark matter

relic big bang radiation

Higgs Field

gluons

Einstein's special theory of relativity

quantum mechanics

did you use GPS?

works because of General Relativity

existing so just sitting there

You're experiencing much of particle physics:

antimatter

neutrinos

muons

fine tuning of masses* so that chemistry works

dark matter

relic big bang radiation

*Higgs Field

*gluons

Einstein's special theory of relativity

quantum mechanics

Einstein's general theory of relativity

the big bang

connected these two fields

of cosmology and particle physics

ISP220 is a course about our Origins

ISP220

leads you to

understand, appreciate, and become familiar with

all of this

and more

this is a

Big Questions course

The Big Questions

key:

blue: a particle physics question

green: a cosmology question

yellow: a bigger question than only cosmology or particle physics!

- 1. What is the Nature of Space and Time?
 - 2. Did the Universe have a Beginning?
 - 3. Will the Universe end?
 - 4. Is there only one Universe?
- 5. What was the nature of the Early Universe, just after the Big Bang?
 - 6. Was there anything before the Big Bang?
 - 7. Why are galaxies clumped into filament structures?
 - 8. Do Gravitational Waves exist?
 - 9. Do Black Holes radiate?
 - 10. What is the origin of ultra-high-energy Cosmic Rays?
 - 11. What is the nature of Nothing?
 - 12. What is the nature of Something! What is Mass in general?
 - 13. What is the nature of the Higgs Boson(s)?
- 14. What new physics does the 2012 Higgs Boson-like particle point to?

15. What is the nature of Gravity and is there a Quantum Theory of Gravity?

16. What are the masses and nature of Neutrinos?

17. What is Dark Energy?

18. How many Fundamental Forces of Nature are there?

19. Why is Gravity so weak?

20. Is there a single, Theory of Everything?

21. How many Fundamental Particles are there?

22. Why do the particles have the masses that they do?

23. Are Quarks and Leptons made of other particles?

24. Are elementary particles strings?

25. What is the nature of Dark Matter?

26. Where is all of the Antimatter?

27. Is the Proton "forever" or can it decay?

key:

blue: a particle physics question

green: a cosmology question

yellow: a bigger question than only cosmology or particle physics!

Three distinct themes

- "Foundations" ..."regular physics"...bare minimum very brief and gentle.
- Einstein's Relativity

 Special and General Theories, including the beginning of quantitative cosmology
- Field theories

 particle physics and the early universe

 Current right now challenges

with that

start reading and watching

questions?