Tuesday, 5 Feb

brought to you by the letters ELECTRIC AND MAGNETIC FIELDS

pitchers and catchers report in 8 days

AC/DC week

housekeeping

A mistake

the Kepler's Law answer in L8 was wrong

everyone gets credit. Those who told me about it get 3xcredit

MasteringAstronomy! Free. Go there & register:

Course ID: MABROCK41459

Access code: WSSPCT-BLIDA-INANE-TOGUE-RIGOT-UNRWA

free e-text, The Cosmic Perspective

reading assignments and homework, mixed with Mastering Physics

During Part 1: you're doing a great job keeping up!

I sure hope you're keeping up

Lectures begin next tuesday, 2/12

Content: a mixture of text and video

Status of the server is:

February 2019

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
27		yadda y			1	HW2
3		lessons 10,11,12	6	lesson 13		9 HW3
10		lecture		lecture		
17		lecture		lecture	HW4 due	
24 V	nidterm?	lecture	27	lecture	HW5 due	2

Eastern Time Time Zone

quiz

when we left off....way...back

this changed everything

 $G = 6.67300 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$ "Gravitational Constant"

energy conservation still good

$$F_{A,S} = G \frac{M_A M_S}{R^2}$$
$$U(R) = -G \frac{Mm}{R}$$

So, $E_T = 0$ when KE=0

$$K(R) + U(R) = KE + PE = \text{constant}$$

so this *decreases* as apple approaches this increases as apple approaches

Escape Velocity.

"escape velocity"

Newton had 3 issues:

- 1. "Action at a distance"
- 2. Stability of the Universe
- 3. Absolute Space and Time

now go back to yesteryear of NASA

DOCKING!!

$$v^2 = G \frac{M_E}{R}$$

Gemini V

June 1965

James McDivitt and Ed White

something's there

 $v = \sqrt{G \frac{M_{\text{galaxy center}}}{R}}$

KPC 24 DISTANCE TO CENTER (MINUTES OF ARC too fast!

Vera Rubin, w/ Kent Ford,

1970: Andromeda

Something's wrong! The amount of mass required in order to match the motion is about 1/6 of what is observable.

silver bullet(s)

Bullet Cluster

Abel 1689 composite image from **Hubble Space** Telescope and the Chandra X-ray Observatory

simulation-inspired artistic view of milky way...blue is the amount of dark matter required

if it's not a particle

then, we're completely lost

which would be...you know...kind of cool

hypothetical

Dark Matter

=:-O

? - but perhaps 30% of the universe

7

something entirely new

did the Universe have a beginning?

Newton said, "No."

You can do an experiment to show him to be wrong.

"Olbers' Paradox"

let Hubble look at a tiny patch of sky

Hubble eXtreme Deep Field:

23 days of exposure in 1/13,000,000th of sky

10,000 galaxies

as they were when 600M years old

or 13.2B years ago

last year: 200,000,000,000 galaxies

Sloan Digital Sky Survey

Apache Point, New Mexico

equivalent of an 8Bly large box

because there have not always been stars our visible universe had a beginning

electricity and magnetism

just the facts, Ma'am

> 100 years of study

"natural" electric shocks

late 1700's people started to carefully investigate electricity

The rules of electrostatic force of attraction/repulsion

strange Henry Cavendish (1731 - 1810) did it first

Charles Coulomb (1736 - 1806) did it better

protons, neutrons, electrons

we'll care a lot about their properties:

mass

electric charge

"spin"

$$m_{\text{proton}} = 1.672621637(83) \times 10^{-27} \text{ kg}$$

$$m_{\text{neutron}} = 1.67492729(28) \times 10^{-27} \text{ kg}$$

$$m_{\text{neutron}} = 1.001402 \text{ x } m_{\text{proton}}$$

$$m_{\text{electron}} = 9.10938215(45) \times 10^{-31} \text{ kg}$$

$$m_{\text{electron}} = 0.000545 \text{ x } m_{\text{proton}}$$

 $m_{\rm proton} \approx m_{\rm neutron}$

those numbers!!

no fun.

seriously. 10⁻²⁷ 's??

there's a way out

our units

"p" has almost the same mass as

I'll sometimes refer to masses as:

So the mass of a Helium nucleus I might call

"~4 p "

"about 4 p"*

* This is called the "mass number" in the context of atomic physics or chemistry

electric charge, Q or q

the electron

three kinds

positive

negative

neutral

attraction & repulsion

likes repel

opposites attract

the proton

and neutron and "photon"

more numbers

Electrical charge units are archaic: the "Coulomb," C

```
1 \text{ C} \sim 6 \times 10^{18} \text{ protons}
= 6,000,000,000,000,000 protons
```

Electrical charge comes in a special package:

```
charge of electron = -1.6 \times 10^{-19} \text{ C}
charge of proton = +1.6 \times 10^{-19} \text{ C}
charge of electron = 0 \text{ C}
```

please simplify!

more horrible numbers!!

still no fun.

seriously. 10⁻¹⁹ 's??

there's a way out

more numbers

simplify

Standard notation:

"e": = 1.6 x 10⁻¹⁹ C

Electrical charge comes in a special package:

charge of electron = $-1.6 \times 10^{-19} \text{ C}$ charge of proton = $+1.6 \times 10^{-19} \text{ C}$ charge of electron = 0 C

constant of nature:

Elementary unit of electric charge

value: $e = 1.602176565(35) \times 10^{-19}$

units: C (Coulombs)

usage: magnitude of charge of a proton

(+) and electron (-)

You might want to remember this:

nature never loses electric charges

count charges

something happens!

count charges again

no change: Electrical Charge is "Conserved"

electrostatic transfer by contact

before

after

electrons move

classically: fur

classically: amber

Greek: "elektron"

electricity...in the midwest winter?

shocking.

10's of thousands of volts

natural or on purpose

Abraham Bennet FRS (1749 -1799) gold leaf electroscope

electrical currents

moving charges

in materials with promiscuous electrons

that get around

Copper: 29 protons, electrons 34 neutrons

electrical charges in motion

a "current"

whether in a wire or not

projects

sketch what you see in your sheets.

we should all have lectures like this

Hans Christian Oersted

April 21, 1820

Ampere's Law

forces between wires carrying current

$$F \sim \frac{I_L I_R}{R}$$

Oersted's compass?

could cancel out the effects

You might want to think about this:

If currents cause magnetism shouldn't magnetism create currents?

there's a story there.

Michael Faraday (1791 - 1867)

Electromagnetic Induction

BUT:

only magnetism CHANGING in time creates a current

important example

with evolving explanations

olving

important

when magnetic lines of force change in time

a current flows: "Faraday's Law"

Faraday saw things

that weren't there for most

He saw:

"lines of force" exerting a physical force on little bits of iron

circular "lines of force"

Faraday's "model"

the lines of force were real features of space

he called this feature of space a "field"

"action at a distance"? no!

the field idea

"Action at a Distance" a no-no

What about Electrostatic Forces?

understanding a field

it's tough

it has a quantum mechanical explanation

meaning that classical explanations leave one gasping and uncertain

 $F = k \frac{Q}{R^2} (q) \quad \blacksquare$

depends only on Q

$$E = k \frac{Q}{R^2}$$

1/2 of "Loventz Force"

called the Electric Field for a point charge, Q

Forces due to Electric Fields:

$$\vec{F} = \vec{E}q$$

the Electric Field

for a point, **POSITIVE** charge

projects, continued

we'll look at a number of fields

you sketch on your sheets