Thursday, 7 Feb

brought to you by the letters ELECTRIC AND MAGNETIC FIELDS

pitchers and catchers report in 6 days

AC/DC week (get it?)

housekeeping

MasteringAstronomy! Free. Go there & register:

Course ID: MABROCK41459

Access code: WSSPCT-BLIDA-INANE-TOGUE-RIGOT-UNRWA

free e-text, The Cosmic Perspective

reading assignments and homework, mixed with Mastering Physics

During Part 1:

you're doing a great job keeping up!

I sure hope you're keeping up

I will re-open the closing dates for all of the LON-CAPA reading questions for a brief window-of-reprieve

Saturday, February 9 midnight until Thursday, February 14 midnight

February 2019

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
27		yadda y			1	HW2
3		lessons 10,11,12	6	lesson 13		9 HW3
10		lecture		lecture		
17		lecture		lecture	HW4 due	
24 V	nidterm?	lecture	27	lecture	HW5 due	2

Eastern Time Time Zone

quiz

but let's look through the packet though figures 3-8 we'll do together the rest is for you in groups, as per normal

Earth's magnetic field

20-60 micro-T

enough to protect us from solar wind particles

reason we have auroras

electricity and magnetism

forces between wires carrying current

forces between wires carrying current

You might want to think about this:

If currents cause magnetism shouldn't magnetism create currents?

there's a story there.

olving

important

when magnetic lines of force change in time

a current flows: "Faraday's Law"

Faraday saw things

that weren't there for most

He saw:

"lines of force" exerting a physical force on little bits of iron

worse...

circular "lines of force" when currents were involved

Faraday's "model"

the lines of force were real features of space

he called this feature of space a "field"

"action at a distance"? no!

the field idea

"Action at a Distance" a no-no

What about Electrostatic Forces?

understanding a field

it's tough

it has a quantum mechanical explanation

meaning that classical explanations leave one gasping and uncertain

Electric Field

 $C = k \frac{Qq}{R^2}$

$$F = k \frac{Qq}{R^2}$$

В

$$F = k \frac{Qq}{R^2}$$

put in a bigger charge

 $F = k \frac{Q}{R^2} (q) \quad \blacksquare$

$$E = k \frac{Q}{R^2}$$

1/2 of "Loventz Force"

called the Electric Field for a point charge, Q

Forces due to Electric Fields:

$$\vec{F} = \vec{E}q$$

the Electric Field

for a point, **POSITIVE** charge

the field is the "mover" $\,F=Eq\,$

and also an effect

20

and a cause

You might want to remember this:

the Field is a thing.

there is no action at a distance

Electric fields apply forces to electric charges

$$\vec{F} = \vec{E}q$$

"EMI"* shield inside my macbook pro

*ElectroMagnetic Interference

field potential energy

Q feels a force,

magnetic field of a wire

hands-on-learning well, one hand anyway

from Lesson 13

reminders

so: two kinds of fields

for two particular configurations of charges and currents

are they real?

"Perhaps you still want to ask, what is an electric field? Is it something real, or is it merely a name for a factor in an equation which has to be multiplied by something else to give the numerical value of the force we measure in an experiment?...First, since it works, it doesn't make any difference...."

Edward Purcell, Electricity and Magnetism (standard textbook for physics sophomores)

Faraday thought so.

Come on. Yes. Seriously. They're real.

James Clerk Maxwell

1831 - 1879

One of the most extraordinary theoretical minds:

Starters:

Newton, Maxwell, Einstein, Dirac, Feynman, Gell-Mann

off the bench:

Bohr, Heisenberg, Fermi, and Gamow,

"Maxwell's Equations" in pictures?

a changing B field creates an E field

a changing E field creates a B field

from his 4 equations

came coupled waves moving in time at the

speed of light

a changing E field creates:

a changing E field, which in turn creates:

a changing B field, which in turn creates:

what's waving?

"the Ether"

the 19th century Just-So story...

E and B vibrations are undulations in the Ether

WRONG

relation alert: Speed of a wave

refers to:

$$v = \lambda f$$

middle C ~ 4 ft (=1.2 m) wavelength

example:

f= 262 Hz, so speed of sound:

$$v = 1.2 \times 262 = 314 \text{ m/s}$$

a wave is

a disturbance.

a way to transmit energy

without transmitting matter

one part is stretched, but the rope's tension restores it - and K is passed on to an adjacent part

the *disturbance* moves with velocity
$$v = \sqrt{\frac{T}{\rho}}$$

2 kinds of waves

just some facts, Ma'am

wave speeds

for sound in regular room temperature air?

about 300ish m/s: so about 30 ms to hear me in the back row

for light...anywhere?

$$v = c = 3 \times 10^8 \text{ m/s}$$

$$v = \lambda f \to c = \lambda f$$

frequency and wavelength are coupled for light:

$$c = \lambda f$$

$$c = (700 \times 10^{-9}) f$$

$$\frac{c}{700 \times 10^{-9}} = f$$

$$f = \frac{3 \times 10^8}{7 \times 10^{-7}} = 0.42 \times 10^{15} = 4.2 \times 10^{14} \text{ Hz}$$

projects, continued

sing-along portion

Oersted's compass?

could cancel out the effects

