## Thursday, 17 Jan

brought to you by the letters C O L L I S I O N S

## Bruce Springsteen week

## housekeeping

 You've, doing great!If you're behind, please see me after class


Questions from QS\&BB readings due on the day after the lesson isp220@pa.msu.edu is working now... thanks for pushing me
please put "reading notes" in the subject
Any issues with MasteringPhysics? See me!
The first MP homework will appear on Saturday night
Refunding instructions are on the blog
You should be on Facebook...I've started announcing things
You should watch the course home page which is a Wordpress blog
Okay. MSU has broken Feedburner. I'm looking for alternatives
Remember, I'm out of town on $1 / 24$, so no class that day

## aaackkk!

## issue with LON-CAPA - hardware

typo in the Lesson 6 example right at 6.1
I'll fix it right after class
my face is red

## "CAPER"* cards



The routine: C

1. I ask a question with D responses
2. You fold your card and put it on your forehead
3. Then you defend your answer to the person next to you
4. I might then ask a second time
5. "I don't know?" ...show a blank square

Bring it to class or:
There's an app for that:
https://itunes.apple.com/us/app/capercard/id843445157?mt=8
https://play.google.com/store/apps/details?id=com.hexational.capercard\&hl=en
reading quiz
demonstrations

(b) (A) B
(c)


Collision 1: $\mathbf{A}+\mathbf{B} \rightarrow \mathbf{A}+\mathbf{B}$
(a)

(b)

(c)


Collision 2: $\mathbf{a}+\mathbf{B} \rightarrow \mathbf{a}+\mathbf{B}$

(b)

(c)


Collision 3 with glue: $\mathbf{A}+\mathbf{B} \rightarrow \mathbf{C}$ The glue is brown.
(a)

new physics!
(b)

$\mathbf{A}+\mathbf{B} \rightarrow \mathbf{C} \quad$ What you put in may not be what you get out of a quantum collision.
(a)
(b)

## then something

 happens!(c)


Collision 4: $\mathbf{C} \rightarrow \mathbf{a}+\mathbf{B}$, a quantum particle decay.

(b)
then something
happens!
new physics!
(c)


Collision 5: $\mathbf{a}+\mathbf{B} \rightarrow \mathbf{c}+\mathbf{D}$, a very standard quantum particle collision.
some questions for all of us

## answer, defend



A defensive tackle of mass 2 moving North tackles (and holds) a quarterback of mass 1 running at him with the same speed moving towards the South. What happens?

A they stop dead (no pun intended)

B The DT-QB mass moves North

C The DT-QB mass moves South

D don't know
answer, defend

Same problem.
DT
mass, DT: $m_{\mathrm{D}}=2$
$v_{0}(\mathrm{DT})=2$ North
QB
mass, $\mathrm{QB}: \mathrm{m}_{\mathrm{Q}}=1$
$v_{0}(\mathrm{QB})=2$ South $=-2$ North
The initial DT
momentum is best
represented by:

answer, defend

## A

Same problem.
DT
mass, DT: $m_{\mathrm{D}}=2$
$v_{0}(\mathrm{DT})=2$ North
B

The initial $Q B$
momentum is best represented by:

answer, defend

Same problem.


DT
mass, DT: $m_{\mathrm{D}}=2$
$v_{0}(\mathrm{DT})=2$ North

thermometer diagrams
answer, defend

Same problem.
DT
mass, DT: $m_{\mathrm{D}}=2$
$v_{0}(\mathrm{DT})=2$ North
QB
mass, $\mathrm{QB}: \mathrm{m}_{\mathrm{Q}}=1$
$v_{0}(\mathrm{QB})=2$ South $=-2$ North

The initial momentum
situation is best
represented by:

answer, defend


DT
mass, DT: $m_{\mathrm{D}}=2$
$v_{0}(\mathrm{DT})=2$ North
QB
mass, $\mathrm{QB}: m_{\mathrm{Q}}=1$
$v_{0}(\mathrm{QB})=2$ South $=-2$ North
D don't know
So, the momentum of the DT-QB combined object is what:

## what we just did is this:

$$
p_{0}(D T)+p_{0}(Q B)=p(D T+Q B)
$$




$$
4-2=2=p(D T+Q B)
$$



## answer, defend

The two momenta are:


## A <br> $12 \&-24$

B $\quad 12 \& 24$

C $4 \&-2$

$$
p_{1,0}+p_{2,0}=
$$

D don't know
$(2)(6)+(4)(-6)=$
$12-24=$

## answer, defend

The total momentum in the initial state is:


## A



B
12

C -12
$p_{1,0}+p_{2,0}=$
$(2)(6)+(4)(-6)=$
$12-24=-12$
D don't know
answer, defend

$$
v_{1}=-10
$$


$m_{1}=2 \quad m_{2}=4$
The momentum of 1 after the collision is:


C $\quad-20 \quad p_{1}=(2)(-10)=-20$

D 20

## answer, defend

$$
\stackrel{v_{1}=-10}{m_{1}=2} \stackrel{?}{m_{2}=4}
$$

The momentum of 2 after the collision is:

$$
p_{1,0}+p_{2,0}=
$$

$$
(2)(6)+(4)(-6)=
$$

B

$$
12-24=-12
$$

$$
c
$$

$$
p_{1}=(2)(-10)=-20
$$



|  | -30 |
| :---: | :---: |
| initial state | ! $p$ |
|  | , |
|  | +20 |
|  | - |
|  | ! |
|  | ; |
|  | -10 |
|  | ! |
|  | - T |
| 13 | , |
|  | ! |
|  | : |
|  | $\div-10$ |
|  | ! |
|  | ! |
|  | $\pm-20$ |
|  | ! |
|  | ! |
|  | -30 |
|  |  |



## ATLAS detector at CERN


answer, defend

## A

Which ATLAS event picture shows
momentum balanced in the perpendicular plane?

## B



AATLAS
project
airplanes are not involved


B
C
D

