Tuesday, 22 Jan

brought to you by the letters E N E R G Y

Hiromi day

housekeeping
 Yep, you're, still doing great!

housekeeping Yep, you're still doing great!

If you're behind, please see me after class

housekeeping

 Yep, you've still doing great!If you're behind, please see me after class

Any issues with MasteringPhysics? See me!
The first MP homework appeared last Saturday night Refunding instructions are on the blog: any luck?

housekeeping

 Yep, you're still doing great!If you're behind, please see me after class

Any issues with MasteringPhysics? See me!
The first MP homework appeared last Saturday night
Refunding instructions are on the blog: any luck?
You should watch the course home page which is a Wordpress blog MSU has broken Feedburner. I'm looking for alternatives, none yet

housekeeping

 Yep, you're still doing great!If you're behind, please see me after class

Any issues with MasteringPhysics? See me!
The first MP homework appeared last Saturday night Refunding instructions are on the blog: any luck?
You should watch the course home page which is a Wordpress blog MSU has broken Feedburner. I'm looking for alternatives, none yet Starting to reserve books...look at the Projects tab

housekeeping

 Yep, you're, still doing great!If you're behind, please see me after class

Any issues with MasteringPhysics? See me!
The first MP homework appeared last Saturday night Refunding instructions are on the blog: any luck?
You should watch the course home page which is a Wordpress blog MSU has broken Feedburner. I'm looking for alternatives, none yet
Starting to reserve books...look at the Projects tab
Remember, I'm out of town on thursday, so no class that day

"CAPER"* cards

The routine: C

1. I ask a question with D responses
2. You fold your card and put it on your forehead
3. Then you defend your answer to the person next to you
4. I might then ask a second time
5. "I don't know?" ...show a blank square

Bring it to class or:
There's an app for that:
https://itunes.apple.com/us/app/capercard/id843445157?mt=8
https://play.google.com/store/apps/details?id=com.hexational.capercard\&hl=en

summarize mechanics to this point

special

summarize mechanics to this point

primary relationships

special

speed and acceleration...

summarize mechanics to this point

primary relationships

special

speed and acceleration... $x=v t$

summarize mechanics to this point

primary relationships

special

speed and acceleration... $x=v t \quad v=a t$

summarize mechanics to this point

primary relationships
speed and acceleration... $x=v t \quad v=a t \quad x=\frac{1}{2} a t^{2}$

summarize mechanics to this point

 primary relationshipsspeed and acceleration... $x=v t \quad v=a t \quad x=\frac{1}{2} a t^{2}$

special

$x=\frac{1}{2} g t^{2} \quad$ near earth

summarize mechanics to this point

 primary relationshipsspeed and acceleration... $x=v t \quad v=a t \quad x=\frac{1}{2} a t^{2}$

special

$\begin{array}{ll}x=\frac{1}{2} g t^{2} & \text { near earth } \\ a_{C}=\frac{v^{2}}{R} & \begin{array}{l}\text { centripetal, } \\ \text { circular }\end{array}\end{array}$

summarize mechanics to this point

primary relationships

speed and acceleration... $x=v t \quad v=a t \quad x=\frac{1}{2} a t^{2}$
force

summarize mechanics to this point

primary relationships

speed and acceleration... $x=v t \quad v=a t \quad x=\frac{1}{2} a t^{2}$
force $F=m a$

summarize mechanics to this point

primary relationships

speed and acceleration... $x=v t \quad v=a t \quad x=\frac{1}{2} a t^{2}$
force $F=m a$

special

$\begin{array}{ll}x=\frac{1}{2} g t^{2} & \text { near earth } \\ a_{C}=\frac{v^{2}}{R} & \begin{array}{l}\text { centripetal, } \\ \text { circular }\end{array}\end{array}$
$W=m g \quad \begin{aligned} & \text { weight }, \\ & \text { near earth }\end{aligned}$

summarize mechanics to this point

 primary relationshipsspeed and acceleration... $x=v t \quad v=a t \quad x=\frac{1}{2} a t^{2}$
force $F=m a$

special

$\begin{array}{ll}x=\frac{1}{2} g t^{2} & \text { near earth } \\ a_{C}=\frac{v^{2}}{R} & \begin{array}{l}\text { centripetal, } \\ \text { circular }\end{array}\end{array}$
$W=m g$ weight,
$W=m g$ near earth
$F_{C}=m \frac{v^{2}}{R} \begin{gathered}\text { centripetal, } \\ \text { circular }\end{gathered}$

summarize mechanics to this point

primary relationships

speed and acceleration... $x=v t \quad v=a t \quad x=\frac{1}{2} a t^{2}$
force $F=m a$
momentum

special

$\begin{array}{ll}x=\frac{1}{2} g t^{2} & \text { near earth } \\ a_{C}=\frac{v^{2}}{R} & \begin{array}{l}\text { centripetal, } \\ \text { circular }\end{array}\end{array}$
$W=m g$ weight,
$W=m g$ near earth
$F_{C}=m \frac{v^{2}}{R} \begin{gathered}\text { centripetal, } \\ \text { circular }\end{gathered}$

summarize mechanics to this point

primary relationships

speed and acceleration... $x=v t \quad v=a t \quad x=\frac{1}{2} a t^{2}$
force $F=m a$
momentum $\quad p=m v$

special

$\begin{array}{ll}x=\frac{1}{2} g t^{2} & \text { near earth } \\ a_{C}=\frac{v^{2}}{R} & \begin{array}{l}\text { centripetal, } \\ \text { circular }\end{array}\end{array}$
$W=m g$ weight,
$W=m g$ near earth
$F_{C}=m \frac{v^{2}}{R}$ centripetal, $\begin{gathered}\text { circular }\end{gathered}$

summarize mechanics to this point

primary relationships
speed and acceleration... $x=v t \quad v=a t \quad x=\frac{1}{2} a t^{2}$
force $F=m a$
momentum $\quad p=m v$
energy
$x=\frac{1}{2} g t^{2}$
$a_{C}=\frac{v^{2}}{R}$

near earth | centripetal, |
| :--- |
| circul |

$W=m g$| weight, | |
| :--- | :--- |
| near earth | |
| $F_{C}=m \frac{v^{2}}{R}$ | centripetal, |
| circular | |

summarize mechanics to this point

primary relationships

speed and acceleration... $x=v t \quad v=a t \quad x=\frac{1}{2} a t^{2}$
force $F=m a$
momentum $\quad p=m v$
energy $\quad K=\frac{1}{2} m v^{2}$

special

$\begin{array}{ll}x=\frac{1}{2} g t^{2} & \text { near earth } \\ a_{C}=\frac{v^{2}}{R} & \begin{array}{l}\text { centripetal, } \\ \text { circular }\end{array}\end{array}$
$W=m g$ weight,
$W=m g$ near earth
$F_{C}=m \frac{v^{2}}{R}$ centripetal, $\begin{gathered}\text { circular }\end{gathered}$

summarize mechanics to this point

 primary relationshipsspeed and acceleration... $x=v t \quad v=a t \quad x=\frac{1}{2} a t^{2}$
force $F=m a$
momentum $\quad p=m v$
energy $\quad K=\frac{1}{2} m v^{2} \quad U=m g y$

special

$\begin{array}{ll}x=\frac{1}{2} g t^{2} & \text { near earth } \\ a_{C}=\frac{v^{2}}{R} & \begin{array}{l}\text { centripetal, } \\ \text { circular }\end{array}\end{array}$
$W=m g$ weight,
$W=m g$ near earth
$F_{C}=m \frac{v^{2}}{R} \begin{gathered}\text { centripetal, } \\ \text { circular }\end{gathered}$

summarize mechanics to this point

primary relationships
speed and acceleration... $x=v t \quad v=$ at $\quad x=\frac{1}{2} a t^{2}$
force $F=m a$
momentum $\quad p=m v$
energy $\quad K=\frac{1}{2} m v^{2} \quad U=m g y$
conservation of momentum

special

$\begin{array}{ll}x=\frac{1}{2} g t^{2} & \text { near earth } \\ a_{C}=\frac{v^{2}}{R} & \begin{array}{l}\text { centripetal, } \\ \text { circular }\end{array}\end{array}$
$W=m g$ weight,
$W=m g$ near earth
$F_{C}=m \frac{v^{2}}{R} \begin{gathered}\text { centripetal, } \\ \text { circular }\end{gathered}$

summarize mechanics to this point

primary relationships
speed and acceleration... $x=v t \quad v=a t \quad x=\frac{1}{2} a t^{2}$
force $F=m a$
momentum $\quad p=m v$
energy $\quad K=\frac{1}{2} m v^{2} \quad U=m g y$
conservation of momentum $\quad p(1)_{0}+p(2)_{0}=p(1)+p(2)$

special

$\begin{array}{ll}x=\frac{1}{2} g t^{2} & \text { near earth } \\ a_{C}=\frac{v^{2}}{R} & \begin{array}{l}\text { centripetal, } \\ \text { circular }\end{array}\end{array}$
$W=m g$ weight,
$W=m g$ near earth
$F_{C}=m \frac{v^{2}}{R} \begin{gathered}\text { centripetal, } \\ \text { circular }\end{gathered}$

summarize mechanics to this point

primary relationships
speed and acceleration... $x=v t \quad v=a t \quad x=\frac{1}{2} a t^{2}$
force $F=m a$
momentum $\quad p=m v$
energy $\quad K=\frac{1}{2} m v^{2} \quad U=m g y$
conservation of momentum $\quad p(1)_{0}+p(2)_{0}=p(1)+p(2)$
conservation of mechanical energy

special

$\begin{array}{ll}x=\frac{1}{2} g t^{2} & \text { near earth } \\ a_{C}=\frac{v^{2}}{R} & \begin{array}{l}\text { centripetal, } \\ \text { circular }\end{array}\end{array}$
$W=m g \quad \begin{aligned} & \text { weight }, \\ & \text { near earth }\end{aligned}$
$F_{C}=m \frac{v^{2}}{R} \begin{gathered}\text { centripetal, } \\ \text { circular }\end{gathered}$

summarize mechanics to this point

primary relationships

speed and acceleration... $x=v t \quad v=a t \quad x=\frac{1}{2} a t^{2}$
force $F=m a$
momentum $\quad p=m v$
energy $\quad K=\frac{1}{2} m v^{2} \quad U=m g y$
conservation of momentum $\quad p(1)_{0}+p(2)_{0}=p(1)+p(2)$
conservation of mechanical energy $K_{0}+U_{0}=K+U$

special

$\begin{array}{ll}x=\frac{1}{2} g t^{2} & \text { near earth } \\ a_{C}=\frac{v^{2}}{R} & \begin{array}{l}\text { centripetal, } \\ \text { circular }\end{array}\end{array}$
$W=m g \quad \begin{aligned} & \text { weight, } \\ & \text { near earth }\end{aligned}$
$F_{C}=m \frac{v^{2}}{R} \begin{gathered}\text { centripetal, } \\ \text { circular }\end{gathered}$
reading quiz
a word

project last time

Figure 3: Momentum conservation using areas.

project last time

Figure 3: Momentum conservation using areas.

project last time

Figure 3: Momentum conservation using areas.

project last time

Figure 3: Momentum conservation using areas.

project last time

Figure 3: Momentum conservation using areas.

project last time

Figure 3: Momentum conservation using areas.

project last time

Figure 3: Momentum conservation using areas.
demonstrations
some questions for all of us

remember?

answer, defend

First time:

I let it drop at A

A at the beginning is best described as:

answer, defend

First time:

I let it drop at A

B on the way down is best described as:

B

\square

D

answer, defend

First time:

I let it drop at A

C is best described as:

B

\square

D

answer, defend

First time:

I let it drop at A

D on the way back is best described as:

B

answer, defend

Second time:

I shoved it at A so $\mathrm{K}=1$ box @A

A at the beginning is best described as:

answer, defend

A

Second time:

I shoved it at A so $\mathrm{K}=1$ box @A

B on the way down is best described as:

answer, defend

A

Second time:

I shoved it at A so $K=1$ box @A

D on the way back is best described as:

answer, defend

A

Second time:

I shoved it at A so $\mathrm{K}=1$ box @A

E on the way back is best described as:

at each point along the path

$$
K_{A}+U_{A}=K_{B}+U_{B}=K_{C}+U_{C}=K_{D}+U_{D}=K_{E}+U_{E}=E
$$

at each point along the path

the first attempt:

$$
K_{A}+U_{A}=K_{B}+U_{B}=K_{C}+U_{C}=K_{D}+U_{D}=K_{E}+U_{E}=E
$$

at each point along the path

the first attempt:

$$
\stackrel{0}{K_{A}^{T}}+U_{A}=K_{B}+U_{B}=K_{C}+U_{C}=K_{D}+U_{D}=K_{E}+U_{E}=E
$$

at each point along the path

the first attempt:

$$
\stackrel{0}{K_{A}^{A}}+U_{A}=K_{B}+y_{B}^{\prime}=K_{C}+U_{C}=K_{D}+U_{D}=K_{E}+U_{E}=E
$$

at each point along the path

the first attempt:

$$
K_{A}^{0}+U_{A}=K_{B}+Y_{B}^{\pi}=K_{C}^{A}+U_{C}=K_{D}+U_{D}=K_{E}+U_{E}=E
$$

at each point along the path

the first attempt:

$$
\stackrel{0}{K_{A}^{A}}+U_{A}=K_{B}+Y_{B}^{A}=H_{C}^{A}+U_{C}=K_{D}+U_{D}=\ddot{K}_{E}^{A}+U_{E}=E
$$

at each point along the path

the first attempt:

$$
\stackrel{0}{K_{A}^{A}}+U_{A}=K_{B}+Y_{B}^{A}=H_{C}^{A}+U_{C}=K_{D}+U_{D}=Y_{E}^{A}+U_{E}=E
$$

the second attempt:
at each point along the path

the first attempt:
the second attempt:

$$
K_{A}+U_{A}=K_{B}+U_{B}=K_{C}+U_{C}=K_{D}+U_{D}=K_{E}+U_{E}=E
$$

at each point along the path

the first attempt:
the second attempt:

$$
K_{A}+U_{A}=K_{B}+\not \ddot{X}_{B}^{0}=K_{C}+U_{C}=K_{D}+U_{D}=K_{E}+U_{E}=E
$$

answer, defend
A its potential energy is gone
Second time:
I shoved it at A so $K=1$ box @A

B it rises above E

C it starts back down at E

After the ball reaches
E on the way back

D it's kinetic energy is gone

Remember this from last week?

now let's do the energetics

answer, defend

The initial kinetic energies of $1 \& 2$ are:

A 72 \& 36
 B $12 \&-24$

C $36 \& 72$

D 72 \& 144

answer, defend

$$
m_{1}=2 \quad m_{2}=4
$$

Which best represents the kinetic and total energies in the initial state?

answer, show me

Draw the energies on your sheet!

projects

