

Day 18, 26.03.2019

Cosmology 4

1

2 days until opening day

Ray Brown week

2

Gotta come to class

question about <u>anything</u>?

I'll make a movie for you:

the rest of your grades are in LON-CAPA or MasteringPhysics

MasteringAstronomy:

Homework #8 also in MasteringAstronomy

Course ID: MABROCK41459;

free code: WSSPCT-BLIDA-INANE-TOGUE-RIGOT-UNRWA

March 2019

Honors project

Document #2 is uploaded

https://qstbb.pa.msu.edu/storage/QS&BB2019/Homework Projects/honors project 2019/

It assigns data files to each

Two due dates:

report on the day of the Final

text file of data by April 26

you'll see in document #2

Name	Last modified	Size	Description
Parent Directory		-	
ISP220_inspirationaltalk.pdf	2019-03-10 12:42	4.3M	Portable Document Format file
Minervalnstructions1_2019.pdf	2019-03-15 18:49	2.3M	Portable Document Format file
Minervalnstructions2_2019_1.pdf	2019-03-22 15:50	122K	Portable Document Format file
Zpathintro.mp4	2019-03-10 12:46	274M	
groupA-2.zip	2019-03-22 14:49	30M	ZIP archive
groupA.zip	2019-03-22 14:49	28M	ZIP archive
groupB-2.zip	2019-03-22 14:49	28M	ZIP archive
groupB.zip	2019-03-22 14:49	29M	ZIP archive
groupC-2.zip	2019-03-22 14:49	30M	ZIP archive
groupC.zip	2019-03-22 14:49	30M	ZIP archive
groupD-2.zip	2019-03-22 14:49	28M	ZIP archive
groupD.zip	2019-03-22 14:49	33M	ZIP archive
groupE-2.zip	2019-03-22 14:49	30M	ZIP archive
groupE.zip	2019-03-22 14:49	28M	ZIP archive
groupF-2.zip	2019-03-22 14:49	28M	ZIP archive
groupF.zip	2019-03-22 14:49	31M	ZIP archive
groupG-2.zip	2019-03-22 14:49	29M	ZIP archive
groupG.zip	2019-03-22 14:49	29M	ZIP archive
groupH-2.zip	2019-03-22 14:49	28M	ZIP archive
groupH.zip	2019-03-22 14:49	29M	ZIP archive
groupl-2.zip	2019-03-22 14:49	28M	ZIP archive
groupl.zip	2019-03-22 14:49	28M	ZIP archive
groupJ-2.zip	2019-03-22 14:49	29M	ZIP archive
groupJ.zip	2019-03-22 14:49	28M	ZIP archive
groupK-2.zip	2019-03-22 14:49	30M	ZIP archive
groupK.zip	2019-03-22 14:49	31M	ZIP archive
groupL-2.zip	2019-03-22 14:49	29M	ZIP archive
groupL.zip	2019-03-22 14:49	32M	ZIP archive
groupM-2.zip	2019-03-22 14:49	29M	ZIP archive
groupM.zip	2019-03-22 14:49	31M	ZIP archive
groupN-2.zip	2019-03-22 14:49	30M	ZIP archive
groupN.zip	2019-03-22 14:49	30M	ZIP archive
groupO-2.zip	2019-03-22 14:49	30M	ZIP archive
groupO.zip	2019-03-22 14:49	31M	ZIP archive
groupP-2.zip	2019-03-22 14:49	30M	ZIP archive
groupP.zip	2019-03-22 14:49	30M	ZIP archive
groupQ-2.zip	2019-03-22 14:49	31M	ZIP archive
groupQ.zip	2019-03-22 14:49	31M	ZIP archive
groupR-2.zip	2019-03-22 14:49	30M	ZIP archive
groupR.zip	2019-03-22 14:49	28M	ZIP archive
groupS-2.zip	2019-03-22 14:49	29M	ZIP archive
groupS.zip	2019-03-22 14:49	26M	ZIP archive
groupT-2.zip	2019-03-22 14:49	31M	ZIP archive
groupT.zip	2019-03-22 14:49	29M	ZIP archive
groupU.zip	2019-03-22 14:49	29M	ZIP archive
groupV.zip	2019-03-22 14:49	29M	ZIP archive
groupW.zip	2019-03-22 14:49	26M	ZIP archive
groupX.zip	2019-03-22 14:49	26M	ZIP archive
groupY.zip	2019-03-22 14:49	27M	ZIP archive
groupZ.zip	2019-03-22 14:49	27M	ZIP archive
to lb of	0010 00 00 11.10		

Einstein

began the first truly scientific field of cosmology applying GR (1915) to the entire universe

1917: Cosmological Considerations in the General Theory of Relativity

"It exposes me to the danger of being confined to a madhouse."

the dreaded

Cosmological Constant, A

geometry G = T

Wanted a spherical, static universe. You can't always get what you want.

So he added a **slow-down** term...

 $G + \Lambda = T$

the "Cosmological Constant"

Makes the Universe static...not expanding or contracting

later: "My biggest blunder."

for 2 reasons: Hubble and instability

energy, pressure, mass

A mathematical fact: These 3 are the only geometries that can be both homogeneous and isotropic

is impossible to visualize the negative curvature 3d shape... it's like a saddle, or mmm Pringles Potato HyperChips

Alexander Friedman (1888 -1925)

in 1922, 23

finds a whole class of solutions!

with and without Λ

Pandora's Box.

Now, the modern basis of GR solutions: the "Friedman Solutions"

29 June 1922, submits paper "On the curvature of Space" to to Zeitschrift für Physik

Einstein didn't take it well.

Adding insult to injury, an unknown mathematical meteorologist from Russia opened The General Relativity

G = T $G + \Lambda = T$

Georges Lemaître (1894-1966)

Father of the Big Bang

I crack myself up.

In 1927 Lemaitre published a solution

"A homogeneous Universe of constant mass and growing radius accounting for the radial velocity of extragalactic nebulae"

Solving G = T....with spacetime geometry set free

in an obscure Belgian journal

He predicted the existence of the **Hubble constant!**

Edwin Hubble 1889-1953

astronomer

discoverer of:

the whole universe

the expanding universe

distances are hard to determine

Cepheid Variable stars: the clue to galactic distances

absolute brightness is related to their period

since brightness goes like 1/R² -> distance!

bootstrapping

1912

discovered by Henrietta Leavitt at Harvard

Cepheid Variable Stars

plus Leavitt's analysis:

distance from Earth

to galaxies that include Cepheid stars

15

atomic spectra

unique fingerprint of the atomic species

http://www.ruf.rice.edu/~mcannon/Research%20Home/Research%20Home.htm

Hubble used

the finger-print tool of spectroscopy

His results:

Wavelengths from far-away sources appeared longer - "redshifted"

suggesting all of his galaxies seemed to be moving away from us...thinking "Doppler"

http://www.astro.ucla.edu/~wright/doppler.htm

spectra examples

18

spectroscopy of stars and galaxies

plus Hubble's analysis:

speed of galaxies

from Earth

H: a measure of the time a galaxy has been "traveling"

It's a little tricky... Think Balloons.

= r H

HUBBLE'S CONSTANT = 1/T

FROM LEAVITT'S CEPHEID VARIABLE RELATION

relation alert:

Hubble's Law v = rHrefers to:

example:

Speed of a galaxy is proportional to the

distance away from any point. galaxy NGC1832 is 9.57 x 10²⁰ km away, so Hubble's Law says it would be moving at v = 2150 km/s

Lemaître was the first to realize that Hubble had demonstrated:

1. spacetime is stretching

The entire kit and caboodle is expanding

Here's what it does NOT mean:

galaxies are not "moving away" inside of the universe

what stretching DOES mean

is complicated!

universe

Lemaître was the first to realize that Hubble had demonstrated:

- 1. spacetime is stretching
- The entire kit and caboodle is expanding

2. But then he realized that the current Universe could have come from something smaller

think about the ballood coming from a smaller size

and still smaller and still smaller

until.

r (from A)

speed and distance!

$$H = \frac{v}{r}$$
$$+1^{-1} = \frac{r}{v}$$

5h

Hubble Constant

critical measurable parameter in cosmology a rough estimate of the age of the universe

Measuring the Hubble Constant is an important cottage industry in astronomy

current best result:

 $H_0 = 67.66 \pm 0.42 \text{ km/sec/Mpc}$

 $H_0 = 2.2 \times 10^{-18} \text{ s}^{-1} = 4.5 \times 10^{17} \text{ s} = 14.5 \text{ By}^*$

The subscript "0" means: "Now"

* first-pass: The inverse of the Hubble Constant isn't necessarily the age of the universe currently accepted value: 3.82 By

1 megaparsec (Mpc) = 10^6 parsec = 3.26×10^6 light years = 3.086×10^{16} m

30

the expansion represented as

the "Scale Factor": R(t)

the stretchiness of spacetime

modern data

characterized by the "red shift"

z: distance and recession velocity

red shift...5¢ version

observer

0

"Relativistic Doppler shift"

related to the recession velocity: $\frac{\lambda_O - \lambda_e}{\lambda} = \frac{v_e}{c}$

relativistically:

$$z = \sqrt{\frac{1+\beta}{1-\beta}} - 1 \qquad \beta = \frac{v_e}{v}$$

etchiness of space edshift" $\frac{\lambda_e}{\lambda_e} = \frac{v_e}{c}$

suppose light from a galaxy is observed @ wavelength 4 times emitted we'd say: it has a "redshift of 3"

 Paper-and-pencil cosmological calculator

 Sergey V. Pilipenko

Ζ

0.000

 ± 0.005

 ± 0.010

 ± 0.020

 ± 0.030

 ± 0.040

 ± 0.060

-0.080

 ± 0.100

-0.200

 ± 0.300

-0.400

-0.500

-0.600

-0.700

-0.800

-0.900

1.000

У	Ву	/	
	age	time	Z
	13.0		
	12.0	<u>↓</u> 2.0	Ì
62.	<u></u>		+
	<u>↓</u> 10.0 ↓ 9.0	<u>+</u> 4.0 <u>+</u> 5.0	‡ ‡
92.	± 1.0	± 5.0 ± 60	+ 0.5
~ ~	7.0		÷
23.	÷ 6.0	1 × 10	+ 10
r 4	1		1.0
54.	÷ 5.0	$\frac{1}{2}$ 9.0	+
	4.0	10.0	+
85.	+	- 10.0	± 20
	÷ 3.0	± 11.0	2.0
570.			+
	Ť Ť		÷ 3.0
290	+ 2.0	$\frac{1}{2}$ 12.0	
\$30.	+	<u>+</u> 12.2	- 10
	+	12.4	4.0
100.	+	12.6	5.0
	± 1.0	12.8	+
			÷ 6.0
	$\frac{1}{1}$ 0.8	13.0	+
100.		+ 13 2	8.0
	+ 0.6	- 13.2	
	+		10.0
	$\frac{1}{4}$ 0.4	$\frac{1}{13.4}$	+
400.			12.0
	+	+	14.0
	+	+	
	† +	+ 13.6	16.0
	+ 0.2		18.0
	Ŧ	т	<u> </u> 20.0
Ζ

MILKY WAY GALAXY

У	Ву	/	
	age	time	Z
	13.0		
	12.0	± 2.0	Ì
62.	11.0		+
	<u>↓</u> 10.0 ↓ 9.0	<u>+</u> 4.0 <u>+</u> 5.0	† †
92.	¥ 8.0	± 5.0 ± 60	+ 0.5
	± − 1.0		+
23.	± 6.0		
			1.0
54.	5.0	9.0	Į
	4.0	10.0	+
85.			
	÷ 3.0		÷ 2.0
570.	-		<u>+</u>
	+ + +		÷ 30
	$\frac{1}{1}$ 2.0	12.0	- 5.0
830.	Ť.	12.0 12.2	
	+	12.4	÷ 4.0
100	+	12.6	± 50
100.		12.8	- 5.0
			÷ 6.0
	$\frac{1}{1}$ 0.8	± 13.0	Į.
300.	+	+	
	$\frac{1}{1}$ 0.6		0.0
	+		10.0
		± 13.4	
600.		-	12.0
	‡	÷	14.0
	ļ	+	14.0
	+	+ 13.6	16.0
	\downarrow 0.2	- 15.0	18.0
	Ţ	÷	<u> </u>

У	Ву	/	
	age	time	Z
	13.0	$\frac{1}{1.0}$	
	12.0	<u> </u>	Ţ
62.	<u>+</u> 11.0 <u>+</u> 10.0		+
	<u>↓</u> 10.0 ↓ 9.0	¹ 4.0 ¹ 5.0	
92.	± 8.0	<u> </u>	+ 0.5
22	7.0	<u> </u>	+
23.	6.0	****	± + 10
51	± 5 0		-
94.		9.0	+
	4.0	10.0	+
85.			+ 2.0
	$\frac{1}{1}$ 3.0	± 	-
570.	+		+
			3.0
220	÷ 2.0	± ± 12.0	+
500.	+	12.2	4.0
	Ī	12.4	
100.	+	12.6	5.0
	<u>+</u> 1.0	12.8	1
	<u>+</u> +	± 13.0	÷ 6.0
		+ 15.0	+
300.		13.2	8.0
		* * *	
	+	+ - -	$\frac{1}{2}$ 10.0
200	$\frac{1}{1}$ 0.4	$\frac{1}{1}$ 13.4	+
500.	ł	+	12.0
	ŧ		14.0
	Ì	+	16.0
	-	+ 13.6	18.0
	\pm 0.2	ļ	
			20.0

200 MLY Cygnus Void PAVO-INDUS SUPERCLUSTER CENTAURUS SUPERCLUSTER NGC 6769 Group 185 Teloscopium Group 12 Delphinus Void NGC 5419/5488 Group NGC 6753 Group 150 VIRGQ A3565 Group Pavo Cluster 180 Local Void SUPERCLUSTER Pegasus Cluster Virgo III Groups Centaurus A/M83 Group M94 Group Canes II Group M101 Group 21MX Sculptor Group NGC 7172 Group Centaurus Cluster Virgó Cluster NGC 7329 Group LOCAL GROUP M81 Group IC 341/Maffei Group Coma I Group - Leo I Group Ursa Major Cluster 🗤 NCG 2997 Group 2 SOUTHERN NGC 1023 Group SUPERCLUSTER . Eridanus Void Leo II Groups Dorado Group 60 ANIAKE Fornax Cluster 6 Leo Void Hydra Cluster 190.1 ML Antlia Cluster Eridanus Cluster Puppis Cluster HYDRA SUPERCLUSTER Taurus Void Gemiņi Void NGC 1417 Group Cancer Cluster 2

У	Ву	/	
	age	time	Z
	13.0	$\frac{1}{1.0}$	
	12.0	<u> </u>	Ţ
62.	<u>+</u> 11.0 <u>+</u> 10.0		+
	<u>↓</u> 10.0 ↓ 9.0	¹ 4.0 ¹ 5.0	
92.	± 8.0	<u> </u>	+ 0.5
22	7.0	<u> </u>	+
23.	6.0	****	± + 10
51	± 5 0		-
94.		9.0	+
	4.0	10.0	+
85.			+ 2.0
	$\frac{1}{1}$ 3.0	± 	-
570.	+		+
			3.0
220	÷ 2.0	± ± 12.0	+
500.	+	12.2	4.0
	Ī	12.4	
100.	+	12.6	5.0
	<u>+</u> 1.0	12.8	1
	<u>+</u> +	± ± 13.0	÷ 6.0
		+ 15.0	+
300.		13.2	8.0
		* * *	
	+	+ - -	$\frac{1}{2}$ 10.0
200	$\frac{1}{1}$ 0.4	$\frac{1}{1}$ 13.4	+
500.	ł	+	12.0
	ŧ		14.0
	Ì	+	16.0
	-	+ 13.6	18.0
	\pm 0.2	ļ	
			20.0

SUPERCLUSTERS CAL

Ophiuchus Superclusters Capricornus Supercluster Hercules Supercluster B Hercules Supercluster A Corona Borealis Void Capricornus Void **Boötes Superclusters** Shapley Supercluster A Pavo-Indus Supercluster Boötes Void Shapley Supercluster B Macroscopium Void Pices-Cetus Supercluster B CfA2 Great Wall Centaurus Supercluster Sculptor Void Phoenix Supercluster VIRGO SUPERCLUSTER Fornax Void Coma Supercluster Sculptor Wa Hydra Supercluster Ursa Major Supercluster Pices-Cetus Supercluster A Perseus-Pisces Supercluster Leo Supercluster Canis-Major Void Columba Void Sextans Supercluster Horologium Supercluster Columba Supercluster

У	Ву	/	
	age	time	Z
	13.0	$\frac{1}{1.0}$	
	12.0	<u> </u>	Ţ
62.	<u>+</u> 11.0 <u>+</u> 10.0		+
	<u>↓</u> 10.0 ↓ 9.0	¹ 4.0 ¹ 5.0	
92.	± 8.0	<u> </u>	+ 0.5
22	7.0	<u> </u>	+
23.	6.0	****	± + 10
51	± 5 0		-
94.		9.0	+
	4.0	10.0	+
85.			+ 2.0
	$\frac{1}{1}$ 3.0	± 	-
570.	+		+
			3.0
220	÷ 2.0	± ± 12.0	+
500.	+	12.2	4.0
	Ī	12.4	
100.	+	12.6	5.0
	<u>+</u> 1.0	12.8	1
	<u>+</u> +	± ± 13.0	÷ 6.0
		+ 15.0	+
300.		13.2	8.0
		* * *	
	+	+ - -	$\frac{1}{2}$ 10.0
200	$\frac{1}{1}$ 0.4	$\frac{1}{1}$ 13.4	+
500.	ł	+	12.0
	ŧ		14.0
	Ì	+	16.0
	-	+ 13.6	18.0
	\pm 0.2	ļ	
			20.0

Sloan Digital Sky Survey

Apache Point, New Mexico

fly-through of original SDSS, z=0.1

Sloan Digital Sky Survey

Miguel A Aragon (JHU), Mark Subbarao (Adler P.), Alex Szalay (JHU)

"Quasi-stellar object"

very distant "AGN"...active galactic nucleus

extremely energetic black hole environment "radiation"

quasar PG 0052+251 1.4 BLy

У	Ву	/	
	age	time	Z
	13.0	$\frac{1}{1.0}$	
	12.0	<u> </u>	Ţ
62.	<u>+</u> 11.0 <u>+</u> 10.0		+
	<u>↓</u> 10.0 ↓ 9.0	¹ 4.0 ¹ 5.0	
92.	± 8.0	<u> </u>	+ 0.5
22	7.0	<u> </u>	+
23.	6.0	****	± + 10
51	± 5 0		-
94.		9.0	+
	4.0	10.0	+
85.			+ 2.0
	$\frac{1}{1}$ 3.0	± 	-
570.	+		+
			3.0
220	+ 2.0	± ± 12.0	+
500.	+	12.2	4.0
	Ī	12.4	
100.	+	12.6	5.0
	<u>+</u> 1.0	12.8	1
	<u>+</u> <u>+</u>	± ± 13.0	÷ 6.0
		+ 15.0	+
300.		13.2	8.0
		* * *	
	+	+ - -	$\frac{1}{2}$ 10.0
200	$\frac{1}{1}$ 0.4	$\frac{1}{1}$ 13.4	+
500.	ł	+	12.0
	ŧ		14.0
	Ì	+	16.0
	-	+ 13.6	18.0
	\pm 0.2	ļ	
			20.0

"Quasi-stellar object"

very distant "AGN"...active galactic nucleus

extremely energetic black hole environment "radiation"

quasar PG 0052+251 1.4 BLy

so, Z~0.1

Ζ

universe record-holder

The record: March, 2016.

 $GN-Z|_{...Z} = ||_{....Z}$

ed the ob ing of the s than 500 alactic surof a large d (Bouwens et al. 2015 ven a small 2013, 2014, et al. 2013; Leod et al. Kawamata

dshift can ry spectral ources, the ing neutral t al. 2012 refore, de T imaging, eionization et al. 2011; stein et al. t al. 2015;

s, a viable s, a viable scopic con-ik (see e.g. 5; Vanzella)15; Pirzkal 5 the near-

Ζ

universe record-holder

The record: March, 2016.

GN-z||...z = ||.|...so β = 0.986!

Light emitted 13.4 By ago

wavelength emitted then

So the universe has expanded a factor of 12.1 since GN-211 sent its light our way!

_		Draft version March 3 Preprint typeset using $I_{e}T_{E}$
		A REMARKABLY I P. A. Oesch ^{1,2} , G. Bran Momcheva ^{2,3} , M. L. N.
	arXiv:1603.00461v1 [astro-ph.GA] 1 Mar 2016	We present H GN-211, identification break to the continuum break to metric data, in the state of the planck (inst was well underwy well the planck (inst it is launched Subject heading). A 1000 The first billion years which we universe under for a neutral to an is ing of galaxies in this of the universe under for a neutral to are ing of galaxies in this of the winner. The statement of the sta

3, 2016 X style emulateapi v. 5/2/11

JUMINOUS GALAXY AT Z = 11.1 MEASURED WITH HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY

MMER³, P. G. VAN DOKKUM^{1,2}, G. D. ILLINGWORTH⁴, R. J. BOUWENS⁵, I. LABBÉ⁵, M. FRANX⁵, I. ASHBY⁶, G. G. FAZIO⁶, V. GONZALEZ^{7,8}, B. HOLDEN⁴, D. MAGEE⁴, R. E. SKELTON⁹, R. SMIT¹⁰, L R. SPITLER^{11,12}, M. TRENTI¹³, S. P. WILLNER⁶

Draft version March 3, 2016

ABSTRACT

 $[ubble WFC3/IR slitless grism spectra of a remarkably bright <math>z \gtrsim 10$ galaxy candidate, fied initially from CANDELS/GOODS-N imaging data. A significant spectroscopic het initially non-OKADEDS of ODSA's magning tata. A significant spectroscopic kas is detected at $\lambda = 1.47 \pm 0.01 \ \mu\text{m}$. The new grism data, combined with the phorule out all plausible lower redshift solutions for this source. The only viable solution tinuum break is the Ly α break redshifted to $z_{\text{grism}} = 11.09^{+0.12}$, just ~400 Myr after This observation extends the current spectroscopic frontier by 150 Myr to well before tantaneous) cosmic reionization peak at $z \sim 8.8$, demonstrating that galaxy build-up galaxy at such an early time: its UV luminosity is $3 \times larger than L_*$ measured at Spitzer IRAC detections up to 4.5 μ m of this galaxy are consistent with a stellar mass his spectroscopic redshift measurement suggests that the James Webb Space Telescope e able to similarly and easily confirm such sources at z > 10 and characterize their ies through detailed spectroscopy. Furthermore, WFIRST, with its wide-field near-IR find large numbers of similar galaxies and contribute greatly to JWST's spectroscopy, I early enough to overlap with JWST. ps: galaxies: high-redshift — galaxies: formation — galaxies: evolution — dark ages,

reionization, first stars

RODUCTION

s are a crucial epoch in cosmic ne first stars and galaxies formed rwent a major phase transition ionized state. Our understandearly phase of the universe has r the last few years thanks to /IR camera onboard the Hubble a combination with ultra-deep

Yale University, New Haven, CT e Institute, 3700 San Martin Drive,

of California, Santa ity, NL-2300 RA Leiden,

nomia, Universidad de Chile, Casilla

Tecnologias Afines (CATA), Camino Condes, Santiago, Chile mical Observatory, P.O. Box 9, Ob-

s, Durham University, South Road,

omy. Faculty of Sciences. ney, NSW 2109, Australia ical Observatory, P.O. Box 915, North iversity of Melbourne, Parkville 3010.

Spitzer/IRAC imaging. WFC3/IR has pushed the observational horizon of galaxies to the beginning of the cosmic reionization epoch at $z \sim 9 - 11$, less than 500 Myr from the Big Bang. Several large extragalactic surveys have now resulted in the identification of a large very have now resident in the indication of a large sample of more than 800 galaxies at $z \sim 7 - 8$ (Bouwens et al. 2015b; McLure et al. 2013; Finkelstein et al. 2015; Bradley et al. 2014; Schmidt et al. 2014) and even a small sample of $z \sim 9 - 11$ candidates (Oesch et al. 2013, 2014, 2015a; Ellis et al. 2013; Zheng et al. 2012; Coe et al. 2013; Zitrin et al. 2014; Bouwens et al. 2015a; McLeod et al. 2015; Ishigaki et al. 2015; Infante et al. 2015; Ka et al. 2015; Calvi et al. 2016).

Spectroscopic confirmations of very high-redshift can-didates remain limited, however. The primary spectral feature accessible from the ground for these sources, the Ly α line, is likely attenuated by the surrounding neutral hydrogen for all z > 6 galaxies (Schenker et al. 2012; Treu et al. 2013; Pentericci et al. 2014). Therefore, despite the large number of candidates from HST imaging, only a handful of galaxies in the epoch of reionization have confirmed redshifts to date (Vanzella et al. 2011; Ono et al. 2012; Shibuya et al. 2012; Finkelstein et al. 2013; Oesch et al. 2015b; Roberts-Borsani et al. 2015; Zitrin et al. 2015).

Given the low success rate of $Ly\alpha$ searches, a viable alternative approach is to search for a spectroscopic con-firmation of the UV continuum spectral break (see e.g. Dow-Hygelund et al. 2005; Malhotra et al. 2005; Vanzella et al. 2009; Rhoads et al. 2013; Watson et al. 2015; Pirzkal et al. 2015). This break is expected owing to the near-

example quasar

J006.1240 + 39.2219

now you do it:

what's the red shift?

what's the expansion factor?

how old when it released the light?

The Friedman, Walker, Robertson models

Their model of cosmology is variously called the:

Friedman, Walker, Robertson (FWR) model

Friedman, Lemaitre, Walker, Robertson FLWR model

Standard Model of Cosmology

Einstein's original model

What did Einstein say would be the case?

the Cosmological Constant

time

Static...for which he needed a particular value of

the interval again - spacetime separation between two events.

In Special Relativity...which is flat spacetime:

$$\Delta s^2 = (c\Delta t)^2 - (\Delta r)^2$$

In general:

$$\begin{split} \Delta s^2 &= g_{00} (c \Delta t)^2 + g_{11} (\Delta r)^2 & \text{Event 1} \\ \text{The time-dependent} \\ \text{For FLRW model, a parameterization: scale factor} \\ \Delta s^2 &= (c \Delta t)^2 - \frac{R^2(t)}{\left(1 + \frac{kr^2}{4}\right)^2} (\Delta r)^2 & \text{the curvature...} \end{split}$$

2

 r_1, t_1 Event 1 r, t = 0

which one is ours?

that's the story of the last 3 decades

stay tuned

I see

dead stars

An experiment showing that the universe had a beginning.

Hubble ultra-Deep Field

By

first galaxies

Hubble Deep Field

13.82By

radiation era

first stars

big bang

150,000y: atoms form ~180sec: D, He nuclei form 300,000y zero: the big bang

0.4By

~1 μ sec: p, n form

~10⁻¹²sec: where we work

our cosmic calendar: 12 months = 13.8 By

dinosaurs

Milky Way disk

Sun

Earth

first cells

sponges

first plants

4.5 hr to midnight: early chimps

2.8 hr to midnight: australopithecus

14 min to midnight: neanderthal

7 min to midnight: homosapiens

70

To take the story there

We need quantum mechanics and particle physics

ticle physics

