hi

Day 24,04.16.2019

Particle Physics 1

April 2019

Week 14, Feynman Diagrams, weak interactions, and exchange forces

TUESDAY, April 16	Feynman Diagrams, particle zoo, the weak and strong interactions
Required Readings:	Chapter 12 in PCC
	TOE chapter 5 and Appendix C
	Chapter 17 in PCC
	CP Section 4.2
Recommended Readings:	
Additional content:	primitiveDiagrams_o (13m), primitiveDiagrams_1 (4m), primitiveDiagram_2 (9m) in:
Tasks:	3 movies on how to make Feynman Diagrams
Homework available:	
Homework due:	
anything posted?	slides
THURSDAY, April 18	Quarks, W and Z Bosons, and the gluon
Required Readings:	TOE chapter 5
	Chapter 17 in PCC
	CP Section 4.2
Recommended Readings:	
Additional content:	
Tasks:	
Homework available:	HW12: MasteringPhysics
Homework due:	HW11: Sunday, April 21
anything posted?	slides

housekeeping

Poster selection:
reservations were due last Friday from within LON-CAPA
Some tutorial videos to watch
How to draw Feynman Diagrams

you know the

drill:

from the mothership:

To: RAYMOND LBROCK
From: sirs@msu.edu

Student Instruction Rating System (SIRS Online) collects student feedback on courses and instruction at MSU. Student Instructional Rating System (SIRS Online) forms will be available for your students to submit feedback during the dates indicated:

```
ISP 220 001: 4/15/2019-5/15/2019
ISP 220 002: 4/15/2019-5/15/2019
```

Direct students to https://sirsonline.msu.edu.

Students are required to complete the SIRS Online form OR indicate within that form that they decline to participate. Otherwise, final grades (for courses using SIRS Online) will be sequestered for seven days following the course grade submission deadline for this semester.

SIRS Online rating summaries are available to instructors and department chairs after 5/15/2019 at
https://sirsonline.msu.edu. Instructors should provide copies of the rating summaries to graduate assistants who assisted in teaching their course(s). Rating information collected by SIRS Online is reported in summary form only and cannot be linked to individual student responses. Student anonymity is carefully protected.

If you have any questions, please contact Michelle Carlson, (mcarlson@msu.edu, (517)432-5936).

Somehow early in the morning last Thursday ...I uploaded a stale version of the project page It was fixed by afternoon.
and, jeez...

LON-CAPA is misbehaving with formatted additions so send me your formatted FFB file
BUT:

Put words in the LON-CAPA location to tell me that you sent it!
That way, Ill not lose it and I can still use the LON-CAPA grading system.

vacuum is full

of fields
one for every "particle"

a little more specific

$$
\left.a^{\dagger}(k)|0>=| e\right\rangle
$$

$$
a(p)\left|\gamma>=\left|0>\quad a^{\dagger}\left(k^{\prime}\right)\right| 0>=\right| e>
$$

what the

 mathematics tells us

$$
a(p)|\gamma>=| 0>
$$

it's not like the photon is now "in" the electron
the photon pops the electron- positron pair out of the Ur electron field and itself disappears back into the Ur photon field.

Feynman Diagrams

now for real.

Richard

Feynman, Sin-Itiro Tomonaga,

Julian

Schwinger

1965 Nobel
 Nobel Laureates

Nobelprize.org
 ,

Home

Home / Nobel Prizes / Nobel Prize in Physics / The Nobel Prize in Physics 1965

About the Nobel Prizes	成Printer Friendly	(Share	\square Tell a Friend	Q Comme	
Facts and Lists	1901		2012		
D Nobel Prize in Physics			Prize category: Physics		∇
All Nobel Prizes in Physics	Sort and list Nobel Prizes and Nobel Laur * $^{\text {a }}$				$\stackrel{+}{*}$

izes in Physics
Facts on the Nobel Prize in Physics
Prize Awarder for the Nobel
Prize in Physics
Nomination and Selection of Physics Laureates
Nobel Medal for Physics
Articles in Physics
Video Interviews
Video Nobel Lectures
Nobel Prize in Chemistry
Nobel Prize in Physiology or
Medicine
Nobel Prize in Literature
Nobel Peace Prize
Prize in Economic Sciences
Nobel Laureates Have Their Say
Nobel Prize Award Ceremonies Nomination and Selection of

Sin-Itiro Tomonaga

Julian Schwinger

Richard P. Feynman

The Nobel Prize in Physics 1965 was awarded jointly to Sin-Itiro Tomonaga, Julian Schwinger and Richard P. Feynman "for their fundamental work in quantum electrodynamics, with deep-ploughing consequences for the physics of elementary particles".

Photos: Copyright © The Nobel Foundation

TO CITE THIS PAGE:

MLA style: "The Nobel Prize in Physics 1965^{5} ". Nobelprize.org. 23 Mar 2013
http://www.nobelprize.org/nobel_prizes/physics/laureates/1965/

the

symbols

of
Feynman
Diagrams

each line

 represents an entire "history" of trajectoriesand "stand in" for many lines of mathematics
to go from A to B, represent all histories with a single line.

Feynman's lines include rules on how to calculate the possibilities in a relativistically consistent way.

very

efficient

avoids lots of technicalities.

When I teach these techniques to second year graduate students, I first do the calculation of Compton Scattering and do it without Feynman's tools.

his rules

eliminate

all of that

and I can just write down the "answer"

appropriately labeled, each line tells us what to put into a long equation for further solving

but the pictures themselves are visually...informative
and I'm going to try to tell you how to do this
without the geeky mathematics

theoretical papers each diagram is a complicated calculation

CHIN. PHYS. LETT. Vol. 27 , No. $8(2010)$ os1201
2.1.1 Lepton and heavy quark pair decays of the SM Higgs particle In lowest order the leptonic decay width of the SM Higgs boson is given by [10, 37]

$$
\begin{equation*}
\Gamma\left[H \rightarrow l^{+} l^{-}\right]=\frac{G_{F} M_{H}}{4 \sqrt{2} \pi} m_{l}^{2} \beta^{3} \tag{6}
\end{equation*}
$$

with $\beta=\left(1-4 m_{l}^{2} / M_{H}^{2}\right)^{1 / 2}$ being the velocity of the leptons. The branching ratio of decays into τ leptons amounts to about 10% in the intermediate mass range. Muonic decays can reach a level of a few 10^{-4}, and all other leptonic decay modes are phenomenologically unimportant.

Figure 3: Typical diagrams contributing to $H \rightarrow Q \bar{Q}$ at lowest order and one-, two- and three-loop $Q C D$.

For large Higgs masses the particle width for decays to b, c quarks [directly coupling to the SM Higgs particle] is given up to three-loop QCD corrections [typical diagrams are depicted in Fig. 3] by the well-known expression [38-40]

$$
\begin{equation*}
\Gamma[H \rightarrow Q \bar{Q}]=\frac{3 G_{F} M_{H}}{4 \sqrt{2} \pi} \bar{m}_{Q}^{2}\left(M_{H}\right)\left[\Delta_{\mathrm{QCD}}+\Delta_{t}\right] \tag{7}
\end{equation*}
$$

we really do use Feynman Diagrams

Feynman's approach is really sneaky and really cute
energy and time appear together in the equations:

In essence, this:

$$
\begin{array}{ll}
\text { either energy solution: } & (\pm E)(t) \\
\text { just the -E solution: } & (-E)(t) \\
\text { move the - sign: } & (E)(-t)
\end{array}
$$

Get a whole new interpretation of antimatter

antiparticles

can be intepreted as particles moving backwards in time. that's it.

we'll do

 this in1. I'll show you how spacetime can be manipulated to predict new physical processes out of old ones
making use of the Feynman idea that antiparticles moving forward in time are the same as particles moving backwards in time

An anti-electron...coming forwards into an initial state:

is the same thing as
An electron coming backwards out of an initial state

An anti-electron...coming forwards out of a final state:

is the same thing as
An electron coming
backwards into a final state
2. But the vast majority of our use will be to develop the handful (11) of "Primitive Diagrams" that we'll put together like a puzzle
to predict all possible physical processes in the
"Standard Model" of particle physics
refers to:
entomology:
example:
any particle with half-integer spin
from Fermi's theoretical work on the behavior of large numbers of Fermions
electron, proton, neutron
refers to:
entomology:
example:
any quantum object with integer spin from Satyendra Nath Bose, who worked on the effects of multiple boson aggregates
photon, pion, Higgs Boson

the key

WM

Vector Boson, spin 1, e.g., photon

the different kinds of lines

look at your Primitive Diagram Sheet

00 gluon, $\operatorname{spin} 1$

scalar Boson, spin 0, e.g., Higgs Boson

the first theory of Feynman's

"Quantum Electrodynamics" or "QED"

the full theory of the physics of photons and electrons

strap in

with pencil in hand

first idea

one can take a single Feynman Diagram that describes a process
and by rearranging it in spacetime, "predict" additional physical processes

Dirac's story
\& Feynman's picture

space diagram

spacetime diagram Feynman diagram

Dirac had photons creating an electron

Feynman's

 calculus allows that

The Dirac hypothesis is called "Pair Production": photon in, electron \& positron out

Now, remember that we treat $c t$ and x identically...

The physics does not care which orientation is which.

note:

I've been banging on you to keep the slopes right you know, photons have slope associated with c

We'll relax that now.

can always

 rotate any Feynman Graphand get a new one

Feynman's trick

depends on the in and out states.

if some manipulation leaves you with particles going the "wrong" direction?

We don't deal with real particles moving backwards in time
fix it.

particles in time

An anti-electron...coming into an initial state to a node:

Yes, this makes sense
is the same thing as
An electron coming out of an initial state (?)

Nope, this makes no sense...time-backwards

An anti-electron...coming out of a final state:

Yes, this makes sense
is the same thing as
An electron coming into a final state (?)

Nope, this makes no
sense...time-backwards

Feynman had rules

We'll have slightly different rules
but similar in spirit

Rule 1.

If you flip a line's arrow forward or backward in time, you change the particle to antiparticle or antiparticle to particle
my rotated diagram... spread out:

look at this

electron comes along and spits out a photon, recoils and goes on its way

regular old radiation

Rule 2.

fermion lines

 must be continuousnotice that the arrows make the lines continuous -
 -

This and more is in these 3 movies:
primitiveDiagrams_0 (13m)
primitiveDiagrams_1 (4m)
primitiveDiagram_2 (9m)
primitiveDiagrams_OR
primitiveDiagrams_1R
primitiveDiagram_2R
full
resolution Reduced resolution
https://qstbb.pa.msu.edu/storage/QS\&BB2019/videos_2019/FeynmanDiagrams /
primitive

diagrams

are general

a puzzle piece to construct real physical reactions
this is completely general...for any charged fermion:

f could be electron, positron, proton, antiproton...and more - any electrically charged fermion.

Their diagrams are identical.

Primitive Diagram Scorecard

your first entry

for

example

from my primitive, I can make two standard processes

the photon is its own antiparticle

particle physics

particle:
 neutron

symbol:
charge:
mass:
spin:
category:
$1.6749 \times 10-27 \mathrm{~kg}, 939.6 \mathrm{MeV} / \mathrm{c}^{2}$ 1/2
fermion, baryon, $\mathrm{I}=-1 / 2, \mathrm{~B}=1$

particle:
 proton

symbol:
charge:
mass:
spin:
category:
$1.6726 \times 10^{-27} \mathrm{~kg}, 938.2 \mathrm{MeV} / \mathrm{c}^{2}$ 1/2 fermion, baryon, $\mathrm{I}=1 / 2, \mathrm{~B}=1$

important realizations

weak force: neutrinos

exchange force

nuclear force

beta decay

the "weak force"
beta decay something seriously wrong
remember: \#neutrons doesn't affect the Chemistry
can add neutrons
as long as the nucleus is energetically stable
"isotopes"

${ }^{13} \mathrm{C}$: 1.1% \& stable
${ }^{14} \mathrm{C}$: trace \& unstable

some isotopes are unstable

they beta-decay
14C: trace amounts \& unstable
But there was a problem with beta decay

Suppose we have a firecracker exploding into two pieces:
beta decay seemed like this
when you expect this

energies

in a "two

body

decay"

are single-valued

Do 100 decays and measure the energy of either object...

Should get a particular speed for the electron

But this is what happened in beta decay. spread-out values for speed (energy)!

[^0]
suppose

you have

a ${ }^{6}$ two

body

 decayshapparent crisisp tor energynenum two objects

Do 100 explosions and measure the energy of either object...
because of the conservation of
conservation +

Fig. 5. Energy distribution curve of the beta-rays.

But this is what happened in beta decay Assumed to be 2 bodies:
Nucleus ---> e and Nucleus'

Wolfgang Pauli, distressed at the crisis and unwilling to part with energy conservation - like Bohr suggested - 1930 made a bold proposal, in an off-hand way:

"I have come upon a desperate way out. To wit, the possibility that there could exist in the nucleus electrically neutral particles which I shall cal neutrons.. The mass...should not be larger than 0.07 times the proton...the ... beta [energy] would then be understandable from the assumption that...a [neutron] is emitted along with the electron...I admit that my way out may not seem very probable...But only he who dares wins
.. . unfortunately I cannot appear personally in Tubingen since a ball which takes place in Zurich makes my presence here indispensable."

Oops: James Chadwick called his new particle the "neutron"
Enrico Fermi called Pauli's the neutrino....little neutron

The prediction of the Neutrino ...thought to be undiscoverable! and massless!

the idea hung around

He suggested that a neutron turns into a proton during beta decay

the discovery of the neutron in 1932 gave Enrico Fermi an idea

With a decay into 3 objects...the speeds of any of them can vary

Enrico Fermi
1901-1954
experimental \&
theoretical physicist!
Nobel Laureate 1938

Probably 2, maybe 3 Nobel prize-worthy experiments.
Probably 2, maybe 3 Nobel prize-worthy theoretical products.
There will never be anyone like Enrico Fermi again.

Enrico Fermi 1901-1954

(actually in a cafeteria in Ann Arbor, 1935)

Enrico

Fermi

Nobel 1938

not for beta decay

for bombarding nuclei with neutrons and causing fission

Nobelprize.org
The Official Web Site of the Nobel Prize

Nobel Prizes Educational \quad Alfred Nobel \quad Video Player \quad| \square |
| :--- |

Home / Nobel Prizes / Nobel Prize in Physics / The Nobel Prize in Physics 1938

About the Nobel Prizes
Facts and Lists
Nobel Prize in Physics All Nobel Prizes in Physics Facts on the Nobel Prize in Physics
Prize Awarder for the Nobel Prize in Physics
Nomination and Selection of Physics Laureates
Nobel Medal for Physics
Articles in Physics
Video Interviews
Video Nobel Lectures
Nobel Prize in Chemistry
Nobel Prize in Physiology or Medicine

Nobel Prize in Literature
Nobel Peace Prize
Prize in Economic Sciences Nobel Laureates Have Their Say

Brinter Friendly	(7) Share	\square Tell a Friend	Q Comments	
1901	2012			
			(4) 1938	-
Sort and list Nobel Prizes and Nobel Laur	$\stackrel{+}{*}$	Prize category: Physics *		

The Nobel Prize in Physics 1938
 Enrico Fermi

The Nobel Prize in Physics 1938 V
Nobel Prize Award Ceremony \quad V
Enrico Fermi

Enrico Fermi

The Nobel Prize in Physics 1938 was awarded to Enrico Fermi "for his demonstrations of the existence of new radioactive elements produced by neutron irradiation, and for his related discovery of nuclear reactions brought about by slow neutrons".

Photos: Copyright (c) The Nobel Foundation

Fermi

Theory of

Beta

Decay

uses the Dirac

 ideas of quantum electrodynamics
particle creation and annihilation

Fig. 5. Energy distribution curve of the beta-rays.
$\mathrm{m}_{\text {neutron }}>\mathrm{m}_{\text {proton }}$
a smidgen.

a free neutron has a lifetime of about 11 minutes. He sent the paper to Nature, but it was rejected:
"it contained speculations which were too remote from reality"

from his original paper for different nuclear species parameters

discovery of the neutrino

took 25 years
experimental tour de-force

Neutrinos very weakly interact in matter lightyears of lead to stop one!

exchange force

the modern view:
if there's a force...there's a field
if there's a field...there's a particle
in 1932 Heisenberg had good idea:
the notion of an "Exchange Force"
the simplest, but most important modeling suggestion ever

Heisenberg: "Hmm. Electrons spontaneously appear out of nuclei."’
maybe they're in the nucleus all the time?
maybe they're even holding it together?

Exchange

Force

The proton is playing catch with itself

with all he knew about: electrons and protons
maybe beta decay?

He knew that sometimes nuclei just spit out an electron. Rutherford's beta decay

analogy: a repulsive exchange force a repulsive exchange force

analogy: an attractive exchange force an attractive exchange force

the idea that the forces of nature are propagated by quanta
entomology:
example:

Heisenberg's picture of exchanging them
the photon!

piece the primitives together

we know

one force

electromagnetism

electricity
magnetism
united by Relativity

The modern idea:
The force of electromagnetism is "propagated" by the photon.

Multiple names: "propogator"
"Intermediate Vector Boson"

I'll call the photon: the "Messenger Field for Electromagnetism"

There's something funny about the nucleus that it is.

charge independence

Heisenberg's original idea was before the neutron
his protons playing catch with electrons?
nope.

remember:

chemistry from \# protons = \#electrons
to "assemble" ${ }^{12} \mathrm{C}$
they have to attract one another

NOT electromagnetism

remember:

chemistry from \# protons = \#electrons
to "assemble" ${ }^{12} \mathrm{C}$

they have to attract one another

But how does it hold together?

why does any nucleus beyond Hydrogen hang together?
those protons want to get away from one another
the electrostatic force of repulsion
Is countered...by an even stronger force

Strong Force

1934
Hideki Yukawa

The Strong Force is a stronger than...anything in the universe. two competing forces:

Electromagnetic Force

Strong is stronger than... anything.

 two competing forces:
Electromagnetic Force

Strong is stronger than... anything. two competing forces:

Strong Force

Strong is stronger than... anything.

 two competing forces:Strong Force
but only over a very short range...
the STRONG force
overwhelms the electromagnetic force

but only over a very short range...
the STRONG force
overwhelms the electromagnetic force

neutrons

and

protons

in the nucleus, the proton and neutron
are two manifestations of the same particle

whatever it is that holds the nucleus together: it's symmetric between the proton and the neutron

For all practical purposes - in holding the nucleus together - the neutron and proton are the same particle - the "Nucleon."

If we ignore electromagnetism...the proton \& the neutron are

 very much alike - we can treat them as being the same particle
neutrons

and

protons
act like they are identical particles
the electric charge?
as a force...Yukawa's force is 100 times the electromagnetic

For nuclear forces: treat p and n as identical and differing only by a "quantum number" called "Isospin"
I

$$
\begin{aligned}
& \text { (} \\
& \mathbf{D} \\
& \text { "nucleon" }
\end{aligned}
$$

A neutron... is a "nucleon" with "isospin down" A proton... is a "nucleon" with "isospin up"

They go together...within the strong, nuclear force.
How?
refers to:
entomology:
example:
either a proton or a neutron
from "nucleus"...the "-on" tends to be a particle name
"nucleon force"

hadron

refers to:
any particle that interacts via the Strong Force
entomology:
example:
$\alpha \bar{\rho} \rho o ́ \sigma$ "hadros" "large", "massive"
proton and neutron not electron, not photon

remember

Nature is
 clumpy

If there is a force...there's a field

If there's a field, there's a quantum to go with it.

The nuclear force is "active" over a short distance

$$
\sim 10-15 \mathrm{~m}
$$

Yukawa knew that.
uncertainty
certainly
to the
rescue
brilliant
observation by
Yukawa
maybe there's a quantum that is active only over the size of a nucleus: "U"
another exchange force/particle?

So: $p \rightarrow n+U$?

Suppose U travels at c within a nucleus... $\Delta t=\Delta x / c$
Then Uncertainty could estimate U's mass... $\Delta E \Delta t=h / 4 \pi$

$$
m_{U}=\Delta E / c^{2}
$$

$$
m_{U} \stackrel{?}{\approx} 100 \times 10^{6} \mathrm{eV}=100 \mathrm{MeV}
$$

the most important thing in particle physics?
getting the name right.
the "U-kon"? thankfully, no.
the "meson?" Why yes, I think I like it.
medium mass...

not too big (proton) not too small (electron): just right.

the hunt was on

to find the Yukawa Particle

but WWII got in the way

Post-war emulsion exposures were startling

proton in cosmic rays

Nitrogen nucleus in cosmic rays

many of these sort:

 something unknown...20,000 stereo photos --> 1600 usable tracks in $3 \mathrm{~cm}^{2}$ plate

strange things in cosmic rays
thick photographic substrates

two

discoveries

This took some unraveling.

The "meson" appeared in and initiated nuclear collisions

The unknown particle seemed to live about a $6 \mu \mathrm{sec}$ too long to be a meson

The winning proposal:
for the price of one

symbol:
charge:
mass:
spin:
category:
π
$+,-, 0$
$139 \mathrm{MeV} / \mathrm{c}^{2}$,
0
Boson, hadron, meson

analogy:

an attractive exchange force

the

Yukawa

particle

is the pion

These coupling strengths are large - strong.

In technical terms we call this...the strong interaction.
three
forces now of vastly different strengths

Electromagnetic force 0.007

Weak force 0.000001

particle: MUOn
symbol:
charge:
mass:
105.7 MeV/c²
spin:
category:
1/2
Fermion, lepton

Electron just more spin: critum...heavier.

BTW

there are as many neutrinos as there are "electrons"
we got the original electron, we got an electron-neutrino
the muon, a muon neutrino

particle:
 muon-neutrino

symbol:
charge:
mass:
spin:
category:
ν_{μ} 0

0 or 0.4-ish to 1-ish eV/c² 1/2

Fermion, lepton
particle: tau-neutrino
symbol:
charge:
mass:
spin:
category:
ν_{τ}
0
0 or 0.4-ish to 1-ish eV/c²
1/2
Fermion, lepton

FAMILIES

Nature prefers

like-particles

Lepton

Families
electrons and a neutrino
muons and a neutrino
taus and a neutrino

These sorts of patterns are a huge deal.

Q

$$
-1
$$

Identical in every way...except mass

$$
\begin{aligned}
& m_{e} \sim \frac{1}{1835} \times m_{p} \\
& m_{\mu} \sim 10 \% \times m_{p} \\
& m_{\tau} \sim 1.8 \times m_{p}!!
\end{aligned}
$$

jargon alert: lepton
refers to:
entomology:
example:
originally, an electron, muon, neutrino
" $\lambda \varepsilon \pi t$ tós" (leptos), "fine, small, thin"
electron, muon, neutrino, tau!
back to the 1940s and 1950s when all hell broke loose
particle: Kaon
symbol:
charge:
mass:
spin:
category:

K
$\pm 1,0$
493.677 (charged state) $\mathrm{MeV} / \mathrm{c}^{2}$

0
Fermion, baryon, $\mathrm{I}= \pm 1 / 2, \mathrm{~B}=1, \mathrm{~S}=-3$
particle: Lambda
symbol: $\quad \Lambda$
charge:
mass:
$1,115.683 \mathrm{MeV} / \mathrm{c}^{2}$
spin:
category: 1/2

Fermion, baryon, $\mathrm{I}=0, \mathrm{~B}=1, \mathrm{~S}=-1$

By the mid-1950's
things are officially out of control.

by 1955

100's of them

The Particle Zoo?

there

were
 clues

patterns and organizing features
began to emerge in the pile of data

Hundreds of experiments, thousands of physicists measuring lifetimes, probabilities, final state multiplicities...and doing it over and over.
organizing
with many
different patterns at a time

Strictly Empirical:

From a 20 year-long accumulation of thousands of different results on production, decay, mass, spin properties of 100's of particles...whole careers. No clue why the patterns.

Various "Quantum Numbers" - all reflecting an underlying "internal symmetry"

Electric Charge
Lepton Numbers
Baryon Number
Strangeness
jargon alert: particle quantum numbers
refers to:
quantities that are inherently a part of particles, which are conserved in interactions or decays
entomology:
example:
historical to Bohr and Schroedinger
electric charge, baryon number, lepton number, isospin
this is empirical - it's what Nature seems to do
we have some ideas about how/why
but understanding quantum number rules is work in progress!

Quantum Number:
Electric Charge
something like these will never happen:
so, you'll always see:
total electric charge at the beginning equals total charges at the end

Quantum Number:

"Strangeness" - a conserved quantum number

the dominant Baryons

$\left.\begin{array}{|c|c|c|c|c|c|c|c}\hline \text { Particle } & \text { Symbol } & \begin{array}{c}\text { Rest Mass } \\ \mathrm{MeV} / \mathbf{c}^{2}\end{array} & \text { spin } & \mathbf{Q} & \mathbf{B} & \mathbf{s} & \text { Lifetime }\end{array} \begin{array}{c}\text { dominant decay } \\ \text { modes }\end{array}\right]$

the dominant Mesons

Particle	Symbol	antiparticle	Rest Mass $\mathrm{MeV} / \mathrm{c}^{2}$	spin	Q	B	S	Lifetime	dominant decay modes
Pion	π^{+}	π^{-}	139.6	0	+1	0	0	2.6×10^{-8}	$\mu^{+} \nu_{\mu}$
Pi-zero	π^{0}	π^{0}	135	0	0	0	0	920	2γ
Kaon	K^{+}	K^{-}	493.7	0	+1	0	+1	1.24×10^{-8}	$\mu^{+} \nu_{\mu}, \pi^{+} \pi^{0}$
K-short	K_{S}^{0}	K_{S}^{0}	497.7	0	0	0	+1	0.89×10^{-10}	$\pi^{+} \pi^{-}, 2 \pi^{0}$
K-long	K_{L}^{0}	K_{L}^{0}	497.7	0	0	0	+1	5.2×10^{-8}	$\pi^{ \pm} \ell^{\mp} \nu_{\ell}$
Eta	η^{0}	η^{0}	548.8	0	0	0	0	$<10^{-18}$	$2 \gamma, \pi^{+} \pi^{-} \pi^{0}$
Eta-prime	$\eta^{0 \prime}$	$\eta^{0 \prime}$	958	1	0	0	0	...	$\pi^{+} \pi^{-} \eta$
Rho	ρ^{+}	ρ^{-}	770	1	+1	0	0	0.4×10^{-23}	$\pi^{+} \pi^{-}, 2 \pi^{0}$
Rho-naught	ρ^{0}	ρ^{0}	770	1	0	0	0	0.4×10^{-23}	$\pi^{+} \pi^{-}$
Omega	ω^{0}	ω^{0}	782	1	0	0	0	0.8×10^{-22}	$\pi^{+} \pi^{-} \pi^{0}$
Phi	ϕ	ϕ	1020	1	0	0	0	20×10^{-23}	$K^{+} K^{-}, K^{0} \bar{K}^{0}$

anyhow...back to the Zoo problem
all those particles.
There were some hints

patterns emerged

to Murray Gell-Mann \& (independently) Yuval Ne’eman in 1964

$$
\begin{gathered}
\Delta^{0} \Xi^{-} \Delta^{-} \\
\Sigma^{-} \Lambda^{0} \Xi^{*} p \\
\Delta^{+} \Sigma^{0}{ }^{*} \Sigma^{*-} \\
\Sigma^{*+} \Delta^{++} n \\
\Xi^{*} \Sigma^{+} \Sigma^{* 0}
\end{gathered}
$$

family arrangements

quarks

the mathematical description of such patterns

1964

Murray Gell-Mann

1929 -
theoretician
Nobel Laureate 1969

Yale at age of 15. PhD from MIT at age of 22.

Speaks at least 13 languages fluently. Studies linguistics now, among other things.

Unraveled many of the organization puzzles of the particle zoo:
strangeness
an empirical mass formula relating them

Worries a lot now about the nature of physical law.

A not-so-good TED lecture on mathematical Beauty in physics...link below.

Gell-Mann found that the patterns work

Gell-Mann's original pattern for quarks. Changed...
if every particle is composed of smaller bits
with fractional electric charge:
charge of up quark:
charge of down quark: charge of strange quark:
$+2 / 3$ e
$-1 / 3$ e
$-1 / 3$ e

fundamental particles, circa...now

quarks and leptons
hadrons are composite: made of quarks
electrons and cousins are fundamental on their own

Baryons \& Mesons differ by quark-content Baryons are made of 3 quarks

Mesons are made of 1 quark and 1 antiquark

Quarks

1964 version

fundamental fermions

in same league as electrons and neutrinos

S

Quark	Symbol	Rest Mass MeV/c	spin	Q	B	S
up	u	$1.7-3.3$	$1 / 2$	$+2 / 3$	$1 / 3$	0
down	d	$4.1-5.8$	$1 / 2$	$-1 / 3$	$1 / 3$	0
strange	s	101	$1 / 2$	$-1 / 3$	$1 / 3$	-1

piece 'em together:

proton

electric charge $=+1$

Quark	Symbol	Rest Mass MeV/c	spin	Q	B	s
up	u	$1.7-3.3$	$1 / 2$	$+2 / 3$	$1 / 3$	0
down	d	$4.1-5.8$	$1 / 2$	$-1 / 3$	$1 / 3$	0
strange	s	101	$1 / 2$	$-1 / 3$	$1 / 3$	-1

piece 'em together:

proton electric charge $=+1$

Quark	Symbol	Rest Mass MeV/c	spin	Q	B	s
up	u	$1.7-3.3$	$1 / 2$	$+2 / 3$	$1 / 3$	0
down	d	$4.1-5.8$	$1 / 2$	$-1 / 3$	$1 / 3$	0
strange	s	101	$1 / 2$	$-1 / 3$	$1 / 3$	-1

piece 'em together:

neutron

electric charge $=0$

Quark	Symbol	Rest Mass MeV/c	spin	Q	B	s
up	u	$1.7-3.3$	$1 / 2$	$+2 / 3$	$1 / 3$	0
down	d	$4.1-5.8$	$1 / 2$	$-1 / 3$	$1 / 3$	0
strange	s	101	$1 / 2$	$-1 / 3$	$1 / 3$	-1

piece 'em together:

neutron

$+2 / 3$

electric charge $=0$
$-1 / 3$
$-1 / 3$

Quark	Symbol	Rest Mass MeV/c	spin	Q	B	s
up	u	$1.7-3.3$	$1 / 2$	$+2 / 3$	$1 / 3$	0
down	d	$4.1-5.8$	$1 / 2$	$-1 / 3$	$1 / 3$	0
strange	s	101	$1 / 2$	$-1 / 3$	$1 / 3$	-1

they all fit

$\operatorname{spin} 3 / 2$

like a glove

S

discovered at Brookhaven within a year

 the "Omega minus" was discovered at Brookhaven National Lab S

most famous bubble chamber picture in history, 1964

FIG. 2. Photograph and line diagram of event showing dec

The event in question is shown in Fig. 2, and the pertinent measured quantities are given in Table I. Our interpretation of this event is

$$
\begin{aligned}
& \begin{array}{c}
K^{-}+p \rightarrow \Omega^{-}+K^{+}+K^{0} \\
\left\{\begin{array}{l}
\Omega^{0}+\pi^{-} \\
\Lambda^{0}+\pi^{0}
\end{array}\right.
\end{array}
\end{aligned}
$$

particle:
 Omega minus

symbol:
Ω^{-}
charge:
mass:
spin:
category:
-1
$1672.45 \mathrm{MeV} / \mathrm{c}^{2}$
3/2
Fermion, baryon, $\mathrm{I}=\mathrm{0}, \mathrm{B}=1, \mathrm{~S}=-3$

the dominant Baryons

Particle	Symbol	Rest Mass $\mathrm{MeV} / \mathrm{c}^{2}$	spin	Q	B	S	Lifetime	dominant decay modes	quark content
proton	p	938.3	1/2	+1	+1	0	$>10^{31} y$		uud
neutron	n	939.6	1/2	0	+1	0	920	$p e^{-} \bar{\nu}_{e}$	$d d u$
Lambda	Λ^{0}	1115.6	1/2	0	+1	-1	2.6×10^{-10}	$p \pi^{-}, n \pi^{0}$	$u d s$
Sigma	Σ^{+}	1189.4	1/2	+1	+1	-1	0.8×10^{-10}	$p \pi^{0}, n \pi^{+}$	uus
Sigma	Σ^{0}	1192.5	1/2	0	+1	-1	6×10^{-20}	$\Lambda^{0} \gamma$	$u d s$
Sigma	Σ^{-}	1197.3	1/2	-1	+1	-1	1.5×10^{-10}	$n \pi^{-}$	$d d s$
Delta	Δ^{++}	1232	3/2	+2	+1	0	0.6×10^{-23}	$p \pi^{+}$	иии
Delta	Δ^{+}	1232	3/2	+1	+1	0	0.6×10^{-23}	$n \pi^{+}, p \pi^{0}$	uud
Delta	Δ^{0}	1232	3/2	0	+1	0	0.6×10^{-23}	$n \pi^{0}$	$u d d$
Delta	Δ^{-}	1232	3/2	-1	+1	0	0.6×10^{-23}	$n \pi^{-}$	$d d d$
Xi	$\Xi{ }^{0}$	1315	1/2	0	+1	-2	2.9×10^{-10}	$\Lambda^{0} \pi^{0}$	uss
Xi	$\Xi{ }^{-}$	1321	1/2	-1	+1	-2	1.64×10^{-10}	$\Lambda^{0} \pi^{-}$	$d s s$
Omega	Ω^{-}	1672	3/2	-1	+1	-3	0.82×10^{-10}	$\Xi^{0} \pi^{-}, \Lambda^{0} K^{-}$	Sss

mesons

	Quark	Symbol	Rest Mass $\mathrm{MeV} / \mathrm{c}^{2}$	spin	Q	B	S		
	up	u	1.7-3.3	1/2	+2/3	1/3	0		
	down	d	4.1-5.8	1/2	$-1 / 3$	1/3	0		
	strange	s	101	1/2	-1/3	1/3	-1		
The pion		Particle	Symbol	antiparticle	Rest Mass $\mathrm{MeV} / \mathrm{c}^{2}$	spin	Q	B	S
		Pion	π^{+}	π^{-}	139.6	0	+1	0	0
		$\pi^{+}=\left(\begin{array}{lll}u & \& & \bar{d}\end{array}\right)$				has the right stuff.			
Q: \quad		+1	$+2 / 3+-(-1 / 3)$						
B:		0	$1 / 3+-(1 / 3)$						
S:		0	0	0					

a little different

a similar thing happens for the mesons
$\operatorname{spin} 1$

meson quark
 content

spin 1

I

the dominant Mesons

| Particle | Symbol | anti-
 particle | Rest
 MeV/c | spin | \mathbf{Q} | \mathbf{B} | \mathbf{s} | Lifetime | dominant decay
 modes | quark content |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pion | π^{+} | π^{-} | 139.6 | 0 | +1 | 0 | 0 | 2.6×10^{-8} | $\mu^{+} \nu_{\mu}$ | $u \bar{d}$ |
| Pi-zero | π^{0} | π^{0} | 135 | 0 | 0 | 0 | 0 | 920 | 2γ | $\frac{1}{\sqrt{2}(u \bar{u}+d \bar{d})}$ |
| Kaon | K^{+} | K^{-} | 493.7 | 0 | +1 | 0 | +1 | 1.24×10^{-8} | $\mu^{+} \nu_{\mu}, \pi^{+} \pi^{0}$ | $u \bar{s}$ |
| K-short | K_{S}^{0} | K_{S}^{0} | 497.7 | 0 | 0 | 0 | +1 | 0.89×10^{-10} | $\pi^{+} \pi^{-}, 2 \pi^{0}$ | $d \bar{s}, s \bar{d}$ |
| K-long | K_{L}^{0} | K_{L}^{0} | 497.7 | 0 | 0 | 0 | +1 | 5.2×10^{-8} | $\pi^{ \pm} \ell^{\mp} \nu_{\ell}$ | $d \bar{s}, s \bar{d}$ |
| Eta | η^{0} | η^{0} | 548.8 | 0 | 0 | 0 | 0 | $<10^{-18}$ | $2 \gamma, \pi^{+} \pi^{-} \pi^{0}$ | $u \bar{u}, d \bar{d}, s \bar{s}$ |
| Eta-prime | $\eta^{0 \prime}$ | $\eta^{0 \prime}$ | 958 | 1 | 0 | 0 | 0 | \ldots | $\pi^{+} \pi^{-} \eta$ | $u \bar{u}, d \bar{d}, s \bar{s}$ |
| Rho | ρ^{+} | ρ^{-} | 770 | 1 | +1 | 0 | 0 | 0.4×10^{-23} | $\pi^{+} \pi^{-}, 2 \pi^{0}$ | $u \bar{d}$ |
| Rho-naught | ρ^{0} | ρ^{0} | 770 | 1 | 0 | 0 | 0 | 0.4×10^{-23} | $\pi^{+} \pi^{-}$ | $u \bar{u}, d \bar{d}$ |
| Omega | ω^{0} | ω^{0} | 782 | 1 | 0 | 0 | 0 | 0.8×10^{-22} | $\pi^{+} \pi^{-} \pi^{0}$ | $u \bar{u}, d \bar{d}$ |
| Phi | ϕ | ϕ | 1020 | 1 | 0 | 0 | 0 | 20×10^{-23} | $K^{+} K^{-}, K^{0} \bar{K}{ }^{0}$ | $s \bar{s}$ |

spins work out

Keep track of quark spins: \quad spin $+1 / 2 \quad q \uparrow$ spin -1/2 $\quad q \downarrow$
for example, a couple of baryons:

$$
p \quad u \uparrow u \downarrow d \uparrow \quad \text { total spin: } 1 / 2
$$

$$
\Delta^{+} \quad u \uparrow u \uparrow d \uparrow \quad \text { total spin: } 3 / 2
$$

for example, a couple of mesons:

$$
\begin{array}{lll}
\pi^{+} & u \uparrow \bar{d} \downarrow & \text { total spin: } 0 \\
\rho^{+} & u \uparrow \bar{d} \uparrow \quad \text { total spin: } 1
\end{array}
$$

there are still

A model of "quark molecules"...

100's more baryons and mesons

what's up with that? you're asking

Molecules can have vibrational and rotational excited states...

So can quarks.
N^{*} is a state with the same quark content as a proton
N^{*} but which has a high orbital angular momentum

$$
d \quad u \quad u
$$

Other states can be well-modeled by assuming relative vibrational modes..

$$
d
$$

you can

 tell a particle physicist by the books that we carry"I laughed, I cried"

now the

jargon

Hadrons: particles made of quarks.

gets a little more straightforward

Baryons: particles made of 3 quarks.

Mesons: particles made of 1 quark and 1 antiquark.

a variety of consequences

One could begin to understand particle decays and reactions in terms of pseudo-Feynman diagrams* like this:

$$
\begin{array}{ll}
\pi^{+}+p \rightarrow \pi^{+}+p \quad \begin{array}{l}
\text { Fermi had produced "resonances" } \\
\\
\\
\\
\\
\text { "hat suggested that something was } \\
\text { in between" the initial and final } \\
\text { states }
\end{array}
\end{array}
$$

$$
\pi^{+}+p \rightarrow \Delta^{++} \rightarrow \pi^{+}+p
$$

scatterings now are thought of diferently
by following the lines...
$\pi^{+}+p \rightarrow \Delta^{++} \rightarrow \pi^{+}+p$
Feynman Diagram, pre-1964:

in quark language:

how about a strong interaction decay?

a little nonintuitive.
$\Delta^{0} \rightarrow \pi^{-}+p$
the old way:

the quark way:

3 quarks
some quark-creation required!

5 quarks
stay tuned.

[^0]: Fig. 5. Energy distribution curve of the beta-rays.

