

Day 25, 04.18.2019 Particle Physics 2

108 days until my 69th birthday

Bon Jovi week

April 2019

Feynman Diagrams, particle zoo, the weak and strong interactions
<u>Chapter 12 in PCC</u>
TOE chapter 5 and Appendix C
<u>Chapter 17 in PCC</u>
CP Section 4.2
primitiveDiagrams_0 (13m), primitiveDiagrams_1 (4m), primitiveDiagram_2 (
<u>3 movies on how to make Feynman Diagrams</u>

Quarks, W and Z Bosons, and the gluon THURSDAY, April 18

Required Readings:	TOE chapter 5
	<u>Chapter 17 in PCC</u>
	CP Section 4.2
Decomposed ad Dec din a	

Recommended Readings:

Additional content:

Tasks:

Homework available: HW12: MasteringPhysics HW11: Sunday, April 21

Homework due:

anything posted?

<u>slides</u>

housekeeping

Poster selection:

reservations were due last Friday from within LON-CAPA

Some tutorial videos to watch

How to draw Feynman Diagrams

Remember my plea about the FFB posts?

now...I've extended the deadline until Saturday. duh.

you know the drill:

from the mothership:

To: RAYMOND L BROCK

From: sirs@msu.edu

Student Instruction Rating System (SIRS Online) collects student feedback on courses and instruction at MSU. Student Instructional Rating System (SIRS Online) forms will be available for your students to submit feedback during the dates indicated:

ISP 220 001: 4/15/2019 - 5/15/2019 ISP 220 002: 4/15/2019 - 5/15/2019

Direct students to https://sirsonline.msu.edu.

Students are required to complete the SIRS Online form OR indicate within that form that they decline to participate. Otherwise, final grades (for courses using SIRS Online) will be sequestered for seven days following the course grade submission deadline for this semester.

SIRS Online rating summaries are available to instructors and department chairs after 5/15/2019 at <u>https://sirsonline.msu.edu</u>. Instructors should provide copies of the rating summaries to graduate assistants who assisted in teaching their course(s). Rating information collected by SIRS Online is reported in summary form only and cannot be linked to individual student responses. Student anonymity is carefully protected.

If you have any questions, please contact Michelle Carlson, (mcarlson@msu.edu, (517)432-5936).

Feynman Diagrams

now for real.

out of his codifying of

Quantum Electrodynamics (QED)

key the

the different kinds of lines

look at your Primitive **Diagram Sheet**

 $^{\prime}0000$

scalar Boson, spin 0, e.g., Higgs Boson

fermion, spin 1/2, e.g., electron

Vector Boson, spin 1, e.g., photon

gluon, spin 1

can always rotate any Feynman Graph and get a new one

ct

particles in time

An anti-electron...coming into an initial state to a node:

is the same thing as An electron coming **out** of an **initial** state (?)

An anti-electron...coming **out** of a **final** state:

is the same thing as An electron coming **into** a **final** state (?)

Yes, this makes sense

Nope, this makes no sense...time-backwards

Yes, this makes sense

Nope, this makes no sense...time-backwards

Feynman had rules

We'll have slightly different rules

but similar in spirit

This and more is in these 3 movies: primitiveDiagrams_0 (13m) primitiveDiagrams_1 (4m) primitiveDiagram_2 (9m) primitiveDiagrams_OR primitiveDiagrams_1R primitiveDiagram_2R

https://qstbb.pa.msu.edu/storage/QS&BB2019/videos_2019/FeynmanDiagrams/

full resolution Reduced resolution

primitive diagrams

are general

a puzzle piece to construct real physical reactions

this is completely general...for any charged fermion:

f could be electron, positron, proton, antiproton...and more – any electrically charged **f**ermion.

Their diagrams are identical.

Primitive Diagram Scorecard

your first entry

Primitive Diagrams	TIME alway
f f f	
2	3
6	7
4	5
8	9
10	11
ermion, spin 1/2, e.g., electron Vector Boson, spin 1, o	e.g., photon gluon, spir

important realizations

weak force: neutrinos

exchange force

nuclear force

beta decay

the "weak force"

exchange force

the modern view:

if there's a force...there's a field

if there's a field...there's a particle

nuclear force

the force that holds protons and neutrons together

"strong"

4 forces of nature

differ from one another

their relative "strengths"

the particles that "see" the individual forces

eg. electrons don't experience the strong force

jargon

jargon alert:nucleonrefers to:either a proton or a neutronentomology:from "nucleus"...the "-on" tends to be a
particle nameexample:"nucleon force"

jargon alert:	hadron	
	refers to:	any particle that Strong Force
	entomology:	αδρόσ "hadros" "I
	example:	proton and neutinot electron, not

interacts via the

arge", "massive"

ron *photon*

jargon alert:	lepton	
	refers to:	originally, an elec neutrino
	entomology:	"λεπτός" (leptos)
	example:	electron, muon,

ctron, muon,

), "fine, small, thin" neutrino, tau!

particles

particle:	muon	
	symbol:	μ
	charge:	+, —
	mass:	105.7 MeV/c ²
	spin:	1/2
	category:	Fermion, lepton

particle:

pionsymbol: π charge:+, -, 0mass:139 MeV,spin:0category:Boson, meson

particle:	Kaon	
	symbol:	K
	charge:	±1, 0
	mass:	493.677 (charged
	spin:	0
	category:	Fermion, baryon,

d state) MeV/c²

$I = \pm 1/2, B=1, S=-3$

particle:	Lambda	
	symbol:	Λ
	charge:	0
	mass:	1,115.683 MeV/c ²
	spin:	1/2
	category:	Fermion, baryon,

I = 0, B=1, S=-1

l	• •	
nnr		\frown

oodles more! symbol:

charge:

mass:

spin:

category:

+, ++, -, 0 1-10 x M_{proton}

1/2, 3/2, 1,0

hadrons = baryons and mesons

pretty much the Greek and Latin alphabets

by 1955

 ν_{13}

 $\begin{array}{c} S_{11} \\ S_{11} \\ D_{15} \\ F_{15} \\ D_{13} \\ P_{11} \\ P_{13} \\ P_{13} \\ F_{17} \\ F_{15} \\ D_{13} \\ S_{11} \\ P_{11} \\ G_{17} \\ D_{15} \\ H_{19} \\ G_{19} \\ I_{1,11} \end{array}$

N(1535)

N(1650) N(1675)

N(1680) N(1700) N(1710) N(1720)

N(1900) N(1990) N(2000) N(2080)

N(2090) N(2100)

N(2190) N(2200) N(2220) N(2250)

N(2600)

**** *** ****

**** * ** ****

*** *** * *** **

* ** * *

 P_{33} P_{33} S_{31}

 $\begin{array}{c} D_{33} \\ P_{31} \\ S_{31} \\ F_{35} \\ P_{31} \\ P_{33} \\ D_{35} \\ D_{33} \\ F_{35} \\ S_{31} \\ G_{37} \\ H_{39} \\ D_{35} \end{array}$

F37

∆(1232)

 $\Delta(1600)$

∆(1620) ∆(1700)

 $\Delta(1750)$

 $\Delta(1900)$

 $\Delta(1905)$

Δ(1910) Δ(1920)

 $\Delta(1930)$

∆(1940)

 $\Delta(1950)$

 $\Delta(2000)$ $\Delta(2150)$

∆(2200)

∆(2300)

∆(2350) ∆(2390)

•••

**

**

** F_{15}

:

 P_{11}

 P_{11}

P₁₁ D₁₃

 S_{11}

 S_{11}

 D_{15}

F₁₅ D₁₃

 P_{11}

 P_{13}

 P_{13}

 F_{17}

 D_{13}

 S_{11}

 P_{11}

G17

V(2700) K_{1.13}

N(1440)

N(1520)

N(1535)

N(1650)

N(1675)

N(1680)

N(1700)

N(1710)

N(1720)

N(1900) N(1990)

N(2000)

N(2080)

N(2090)

N(2100) N(2190)

A ***** S11 ***** D15 ***** D13 **** P13 **** P13 **** P13 *** P14 *** S15 *** P11 * G17 **** P11 * G19 **** A A(1405) A(1405) A(1520) A(1600) A(1600) A(1600) A(1690)	$\Delta_{(175}$ $\Delta_{(176}$ $\Delta_{(190}$ $\Delta_{(190}$ $\Delta_{(191}$ $\Delta_{(192}$ $\Delta_{(193}$ $\Delta_{(194}$ $\Delta_{(200}$ $\Delta_{(200}$ $\Delta_{(200}$ $\Delta_{(200}$ $\Delta_{(235}$ $\Delta_{(230)}$ $\Delta_{(242)}$ $\Delta_{(295)}$ P_{01} S_{01} D_{03} S_{01} D_{03} S_{01} D_{03} S_{01}	() D ₃₃ () P ₃₁ () S ₁₁ () S ₁₁ () P ₃₃ () P ₃₃ () D ₃₅ () D ₃₅ () D ₃₅ () D ₃₅ () D ₃₅ () D ₃₃ () D ₃₅ ()	* ** *** * * * * *	A(1670) A(1670) A(1690) A(1800) A(1810) A(1820) A(1830) A(1890) A(1890) A(2000) A(2000) A(2100) A(2110)	F 01 S01 D03 S01 P01 F05 D05 P03 F07 G07 F05	$\begin{array}{c} * \\ * \\ * \\ * \\ * \\ * \\ * \\ \\ \\ \\ \\ \\ $	480) 560) 580) D ₁ 620) S ₁ 660) P ₁ 670) D ₁ 690) 770) S ₁ 770) P ₁ 775) D ₁ 840) P ₁	* ** 3 * 1 ** 1 *** 3 **** 1 *** 1 * 5 **** 3 *	$\Xi(1690)$ $\Xi(1820)$ $\Xi(1950)$ $\Xi(2030)$ $\Xi(2120)$ $\Xi(2250)$ $\Xi(2500)$ Ω^{-} $\Omega(2250)^{-}$		** ** * * *	F		" N(1440) N(1520) N(1535) N(1650) N(1675) N(1680) N(1700) N(1710) N(1720) N(1990) N(1990)	$\begin{array}{c} r_{11}\\ P_{11}\\ D_{13}\\ S_{11}\\ S_{11}\\ D_{15}\\ F_{15}\\ D_{13}\\ P_{11}\\ P_{13}\\ P_{13}\\ F_{17} \end{array}$	***** **** **** **** *** *** **	$\Delta(1800)$ $\Delta(1700)$ $\Delta(1770)$ $\Delta(1900)$ $\Delta(1905)$ $\Delta(1910)$ $\Delta(1920)$ $\Delta(1920)$ $\Delta(1930)$ $\Delta(1940)$ $\Delta(1950)$ $\Delta(2000)$	F_{33} S_{31} D_{33} P_{31} S_{31} F_{35} P_{31} P_{33} D_{35} D_{33} F_{37} F_{35}	**** * * ** *** *** * * * * * * * * *	A(1405) A(1600) A(1600) A(1600) A(1800) A(1800) A(1810) A(1820) A(1830) A(1890) A(2020)	D ₀₃ P ₀₁ S ₀₁ D ₀₃ S ₀₁ P ₀₁ F ₀₅ D ₀₅ P ₀₃ F ₀₇	**** *** *** *** *** * * * * * * * * *	Σ^{-} $\Sigma(1385)$ $\Sigma(1480)$ $\Sigma(1560)$ $\Sigma(1560)$ $\Sigma(1620)$ $\Sigma(1670)$ $\Sigma(1670)$ $\Sigma(1770)$ $\Sigma(1775)$ $\Sigma(1775)$ $\Sigma(1770)$ $\Sigma(1775)$ $\Sigma(1840)$ $\Sigma(1915)$ $\Sigma(1940)$ $\Sigma(2000)$ $\Sigma(2000)$ $\Sigma(2000)$ $\Sigma(2000)$ $\Sigma(2000)$ $\Sigma(2250)$ $\Sigma(2455)$ $\Sigma(2620)$ $\Sigma(3000)$ $\Sigma(3170)$	$\begin{array}{c} P_{11} \\ P_{11} \\ P_{13} \\ \\ D_{13} \\ S_{11} \\ P_{11} \\ D_{13} \\ \\ S_{11} \\ P_{11} \\ D_{15} \\ P_{13} \\ P_{11} \\ P_{13} \\ S_{11} \\ S$	····· · · · · · · · · · · · · · · · ·	$\begin{array}{c} -\\ \hline = (1530) \\ \hline = (1620) \\ \hline = (1620) \\ \hline = (1620) \\ \hline = (1820) \\ \hline = (1950) \\ \hline = (2030) \\ \hline = (2120) \\ \hline = (2250) \\ \hline = (225$	P ₁₁ P ₁₃ D ₁₃	· · · · · · · · · · · · · · · · · · ·	e	
A(1810) A(1820) A(1830) A(1890) A(2000)	P ₀₁ F ₀₅ D ₀₅ P ₀₃	*** Σ **** Σ **** Σ **** Σ * Σ	(1620) (1660) (1670) (1690) (1750)	S ₁₁ ** P ₁₁ *** D ₁₃ *** S ₁₁ ***	$\Xi(2)$ $\Xi(2)$ $\Xi(2)$ $\Xi(2)$ $\Xi(2)$ $\Xi(2)$ $\Xi(2)$	030) 120) 250) 370) 500)	* * * * *	,	^G (J ^{PC})	N(1680) N(1700) N(1710) N(1720) N(1900)	P ₁₅ D ₁₃ P ₁₁ P ₁₃ P ₁₃	***										LIGHT	T UNFLAVO	RED		Ξ_c^{0} $\Xi_c(2645)$		*** *** STRA	NGE	B
A(2020) A(2100)	F ₀₇	* Σ **** Σ	(1770)	P ₁₁ *	* 0-		****	1	$D^{-}(2^{-})^{-}(1^{-})^{-}$	N(1990) N(2000)	F ₁₇ F ₁₅	**										1 ^G (J ^{PC}))	"	,	$G(J^{PC})$	'	(3 = ±1, 0	$I(J^{p})$	"
A(2110)	F ₀₅	*** Z	(1840)	P ₁₃ *	Ω(2	250)-	***	1	$1^{+}(3^{-1})$	N(2080)	D13	**	Δ							• π [±]		1-(0-) $\bullet \pi_2$	(1670)	1	$1^{-}(2^{-+})$	• K±		1/2(0-)	• B [±]
A(2325) A(2350)	D ₀₃	* Σ *** Σ	(1880)	P ₁₁ ** F ₁₅ ***	* Ω(2)	380)- 470)-	**	1	-(2+	N(2090)	P ₁₁	*								•π [~] •η		0+(0-	+) • $\phi($	(1690)	1	$1^{+}(3^{-}-)$	• K ⁰		1/2(0-)	• B ⁰ • B [±] /B ⁰ AI
A(2585)	* 109	** Σ	(1940)	D ₁₃ ***				0	$0^{+}(0^{+})$	N(2190)	G ₁₇	••••	4						-	 f₀(600) (770) 		0+(0+	+) • ρ(1700)	1	$1^{+}(1^{-}-)$	• K ⁰ _L	0001	1/2(0-)	B [±] /B ⁰ /B MIXTURE
		5	(2000)	S11 *	18 A.(2	593)+	***	1	1-(0-1	N(2200)	D ₁₅	****	A(2420	0) Have	****	_			2	 ρ(770) ω(782) 		$0^{-}(1^{-})$	-) ∂ ₂	(1700)		(2 + +) $0^+(0 + +)$	K (800)	$1/2(0^{+})$ $1/2(1^{-})$	V _{cb} and V,
		5		F15 *	$\Lambda_c(2$	2625)+	***)+(2+)	N(2250)	G ₁₉	****	Δ(2750		**	-			Σ	 η'(958) 		0+(0-	+) η(1760)		0 ⁺ (0 - +)	• K1()	1270)	1/2(1+)	 B[*]
		Σ		P13 **	$\Lambda_c(2$	2765)+	*		() - +	N(2600)	l 1 _{1,11}	***	∆(2950	0) K _{3,15}	**				Σ	 f₀(980) 		0+(0+	+) • π(1800)		$1^{-}(0^{-+})$	• K1(1400)	$1/2(1^+)$	B*J(5732)
				C 8	A 12		**		13	N(2700)	. K								2	 a₀(980) 		1-(0+	5			$1^+(2^++)$	- K*1	1410)	1/2(1=)	

 $\eta_b(1S)$ T(15)

χ_{b0}(1P)

 χ_{b1}(1P) χ_{b2}(1P)
 τ(25)

 $\Upsilon(1D)$

χ_{b0}(2P)

χ_{b1}(2P)
 χ_{b2}(2P)

Υ(35)

T(45)

 T(10860)
r(11020)

NON-qq CA

a mess what's so

"(er		e	nt	a	ry	,,,
• π [±]	$1^{-}(0^{-})$ $1^{-}(0^{-})$	 π₂(1670) φ(1680) 	$1^{-}(2^{-+})$ $0^{-}(1^{})$	• K [±]	$1/2(0^{-})$ $1/2(0^{-})$:		

 ρ(770) 	1+(1)	$\partial_2(1700)$	$1^{-}(2^{++})$	$K_{0}^{*}(800)$	$1/2(0^+)$	K and K (KAA Matrix
 ω(782) 	$0^{-}(1^{-})$	 f₀(1710) 	0+(0 + +)	 K*(892) 	$1/2(1^{-})$	Elements	
 η'(958) 	0+(0 - +)	$\eta(1760)$	0+(0 - +)	 K₁(1270) 	$1/2(1^+)$	• B*	$1/2(1^{-})$
 f₀(980) 	$0^{+}(0^{+}+)$	 π(1800) 	$1^{-}(0^{-+})$	• K(1400)	1/2(1+)	R*(5732)	2(2?)
 a₀(980) 	$1^{-}(0^{++})$	f5(1810)	$0^+(2^{++})$	 K*(1410) 	1/2(1-)	Difforest	
 φ(1020) 	0-(1)	X(1835)	??(? - +)	 K[*]₀(1430) 	1/2(0+)	BOTTOM,	STRANGE
 h₁(1170) 	0-(1+-)	 φ₃(1850) 	0-(3)	 K:(1430) 	$1/2(2^+)$	$(B = \pm 1,$	5 = +1)
 b₁(1235) 	$1^{+}(1^{+}-)$	$\eta_2(1870)$	$0^{+}(2^{-+})$	K(1460)	1/2(0-)	 B⁰_s 	0(0-)
 a₁(1260) 	$1^{-}(1^{++})$	p(1900)	$1^{+}(1^{-})$	K ₂ (1580)	1/2(2-)	B:	0(1-)
 f₂(1270) 	$0^+(2^{++})$	f ₂ (1910)	$0^{+}(2^{+})$	K(1630)	1/2(7?)	B, (5850)	?(??)
 f₁(1285) 	$0^{+}(1^{++})$	 f₂(1950) 	$0^{+}(2^{++})$	K ₁ (1650)	1/2(1+)		• •
 η(1295) 	$0^+(0^-+)$	$\rho_3(1990)$	$1^{+}(3^{-})$	• K*(1680)	1/2(1-)	BOTTOM,	CHARMED
 π(1300) 	$1^{-}(0^{-+})$	 f₂(2010) 	$0^+(2^++)$	• K ₂ (1770)	1/2(2-)	(B = C	= ±1)
 a₂(1320) 	1-(2++)	f ₀ (2020)	$0^{+}(0^{+}+)$	• K*(1780)	1/2(2)	• B [±] _c	0(0-)
 f₆(1370) 	0 + (0 + +)	 a₁(2040) 	$1^{-(4^{++})}$	• K3(1700)	1/2(3)		
h(1380)	7-(1+-)	 f₁(2050) 	$0^+(4^+)$	 N₂(1820) K(1820) 	1/2(2)	C	c la la
 π1(1400) 	1-(1-+)	$\pi_2(2100)$	1-(2-+)	A (1830)	1/2(0)	• $\eta_c(1S)$	$0^{+}(0^{-+})$
 n(1405) 	$0^{+}(0^{-}+1)$	£(2100)	$0^+(0^++)$	N ₀ (1950)	1/2(0 ')	 J/ψ(15) 	0-(1)
 6 (1420) 	$0^{+}(1^{+})$	fs(2150)	$0^+(2^+)$	R ₂ (1980)	1/2(2)	• $\chi_{c0}(1P)$	$0^{+}(0^{+})$
• w(1420)	$0^{-}(1^{-})$	o(2150)	1+(1)	 K[*]₄(2045) 	1/2(4+)	 χ_{c1}(1P) 	$0^{+}(1^{+})$
£(1430)	$0^+(2^++1)$	6(2200)	$0^+(0^++)$	$K_2(2250)$	1/2(2-)	$h_c(1P)$? ^f (? ^{ff})
 a.(1450) 	1-(0++)	£ (2220)	$0^{+}(2 \text{ or } 4^{+})$	$K_3(2320)$	$1/2(3^+)$	• $\chi_{c2}(1P)$	$0^{+}(2^{++})$
• o(1450)	$1^{+}(1^{-})$	n(2225)	$0^{+}(0^{-}+)$	$K_{5}^{*}(2380)$	$1/2(5^{-})$	 η_c(2S) 	0+(0 - +)
• p(1475)	$0^{+}(0^{-}+)$	m(2250)	$1^{+}(3^{-}-)$	$K_4(2500)$	$1/2(4^{-})$	 ψ(25) 	0-(1)
• 6(1500)	$0^+(0^++)$	• 6(2300)	$n^+(2^++)$	K(3100)	?!(?!!)	 ψ(3770) 	$0^{-}(1^{-})$
6 (1510)	$0^+(1^+)$	£(2300)	$0^{+}(4^{+}+)$	CHAR	MED	 X(3872) 	0 [?] (? ^{?+})
f.(1525)	$0^+(2^++)$	• £(2340)	$0^+(2^+)$	(C-	+1)	 χ_{c2}(2P) 	$0^{+}(2^{+})$
£ (1565)	$0^{+}(2^{+}+)$	• /2(2340) (2350)	$1^{+}(5^{-}-)$	(c -		Y(3940)	? [?] (? ^{??})
/2(1505) h.(1505)	$0^{-(1+-)}$	2 (2450)	1 - (6 + +)	• D±	1/2(0-)	 ψ(4040) 	0-(1)
m(1555)	1 - (1 - +)	6(2510)	$n^+(6^+)$	• D*	1/2(0-)	 ψ(4160) 	0-(1)
• (1640)	1 (1 + 1)	⁷⁶⁽²³¹⁰⁾	0 (0)	 D*(2007)³ 	1/2(1-)	Y(4260)	??(1)
a1(1040)	$a^{+}(2 + +)$	OTH	ER LIGHT	 D*(2010)[±] 	1/2(1)	 ψ(4415) 	0-(1)
/2(1040)	$a^{+}(2^{-}+)$	Further Sta	tes	$D_0^{\bullet}(2400)^{\circ}$	1/2(0+)		_
 η₂(1645) (1650) 	0-(2)			$D_0^{*}(2400)^{\pm}$	1/2(0+)	bi	b
• $\omega(1650)$	0 (1)			 D₁(2420)⁰ 	$1/2(1^+)$	$\eta_b(1S)$	0+(0 - +)
 ω₃(10/0) 	0 (5)			$D_1(2420)^{\pm}$	1/2(?*)	 T(15) 	0-(1)
				$D_1(2430)^0$	$1/2(1^+)$	 χ_{b0}(1P) 	$0^{+}(0^{+})$
				 D[*]₂(2460)⁰ 	$1/2(2^+)$	 χ_{b1}(1P) 	$0^{+}(1^{++})$
				 D[*]₂(2460)[±] 	$1/2(2^+)$	 χ_{b2}(1P) 	$0^{+}(2^{++})$
				$D^{*}(2640)^{\pm}$	1/2(??)	 <i>\(\Color\)</i> (25) 	$0^{-}(1^{-})$
				CUADACE	STRANCE	T(1D)	0-(2)
				CHARMED,	5 TRANGE	 χ_{b0}(2P) 	$0^{+}(0^{+}+)$
				(c = 3)	- ====	 χ_{b1}(2P) 	$0^{+}(1^{++})$
				• D [±] ₅	0(0-)	 χ_{b2}(2P) 	$0^{+}(2^{++})$
				 D^{*±}_s 	0(? ^r)	 <i>\(\Tau(35))\)</i> 	$0^{-}(1^{-})$
				 D[*]_{\$0}(2317)[±] 	$0(0^{+})$	 <i>\(\frac{4}{5}\) </i> 	0-(1)
				 D_{s1}(2460)[±] 	$0(1^+)$	 <i>γ</i>(10860) 	0-(1)
				 D_{s1}(2536)[±] 	0(1+)	 <i>γ</i>(11020) 	$0^{-}(1^{-})$
		1		(ar 73)+	0/071	1 1 1	

	2 2 3 3 3 2 2 3 2 3 2 3 3 3 3 3 3 3 3 3	• π^{\pm} • π^{0} • η • $f_{0}(600)$ • $\rho(770)$ • $\omega(782)$ • $\pi'(958)$ • $f_{0}(980)$ • $\sigma_{0}(980)$ • $\phi(1020)$ • $h_{1}(1170)$ • $h_{1}(1225)$ • $\sigma_{1}(1260)$ • $f_{2}(12270)$	$\begin{array}{c} 1^-(0^-) \\ 1^-(0^-+) \\ 0^+(0^-+) \\ 0^+(0^++) \\ 1^+(1^) \\ 0^-(1^) \\ 0^+(0^-+) \\ 0^-(1^) \\ 0^-(1^) \\ 0^-(1^) \\ 0^-(1^+-) \\ 1^-(1^++) \\ 1^-(1^++) \\ 0^+(2^++) \\ 0^+(1^++) \end{array}$	• $\pi_2(1670)$ • $\phi(1680)$ • $\rho_3(1690)$ • $\rho(1700)$ • $\rho(1710)$ • $\eta(1710)$ $\eta(1760)$ • $\pi(1800)$ • $\pi(1800)$ • $f_2(1810)$ X (1835) • $\phi_3(1850)$ $\eta_2(1870)$ $\rho(1990)$	$\begin{array}{c} 1^{-}(2^{-}+)\\ 0^{-}(1^{-}-)\\ 1^{+}(3^{-}-)\\ 1^{+}(1^{-}-)\\ 1^{-}(2^{+}+)\\ 0^{+}(0^{-}+)\\ 1^{-}(0^{-}+)\\ 0^{+}(2^{+}+)\\ 2^{?}(2^{-}+)\\ 0^{-}(3^{-}-)\\ 0^{+}(2^{-}+)\\ 1^{+}(1^{-}-)\\ 0^{+}(2^{+}+)\\$	• K^{\pm} • K^{0} • K_{5}^{0} • K_{1}^{0} • $K^{*}(892)$ • $K_{1}(1270)$ • $K_{1}(1400)$ • $K_{1}(1400)$ • $K^{*}(1410)$ • $K_{2}^{*}(1430)$ • $K(1460)$ • $K_{2}(1580)$ • $K(1630)$	$1/2(0^{-})$ $1/2(0^{-})$ $1/2(0^{-})$ $1/2(0^{-})$ $1/2(1^{-})$ $1/2(1^{+})$ $1/2(1^{+})$ $1/2(1^{+})$ $1/2(2^{+})$ $1/2(2^{+})$ $1/2(2^{-})$ $1/2$	$\begin{array}{c} \bullet B^{\pm} \\ \bullet B^{0} \\ \bullet B^{\pm}/B^{0} & A B^{0} \\ \bullet B^{\pm}/B^{0}/B^{0} \\ MIXTURE \\ V_{ch} & and V, \\ Elements \\ \bullet B^{*} \\ \bullet B^{*} \\ B^{*}(5732) \\ \hline \\ $
• π^{\pm} • π^{0} • η • η • η • η (600) • ρ (770) • ω (782) • η (980) • θ (1020) • $h_1(1170)$ • $b_1(1235)$ • $a_1(1260)$ • $f_2(1270)$ • $f_1(1285)$ • η (1295) • $\pi(1300)$ • $\delta_2(1320)$ • $f_0(1370)$ • $h_1(1380)$ • $\pi_1(1400)$ • $\eta(1405)$ • $f_1(1420)$ • $\omega(1420)$ • $f_2(1430)$ • $\omega_2(1450)$ • $\rho(1450)$ • $\rho(1450)$ • $\rho(1450)$ • $\rho(1450)$ • $\rho(1450)$ • $\rho(1450)$ • $\rho(1450)$ • $\rho(1450)$ • $\rho(1450)$	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} & \eta(1295) \\ \bullet & \pi(1300) \\ & d_2(1^{30}0) \\ & f_0(12) \\ & h_1(1-1) \\ & h_1(1-$	$\begin{array}{c} 0^+(0^{-+})\\ 1^-(0^{-+})\\ 1^-(2^{-+})\\ 0^+(0^{-+})\\ 2^-(1^{+-})\\ 1^-(1^{-+})\\ 0^+(1^{-+})\\ 0^+(1^{-+})\\ 0^+(2^{++})\\ 1^-(0^{++})\\ 1^+(1^{})\\ 0^+(2^{++})\\ 0^+(2^{++})\\ 0^+(2^{++})\\ 0^+(2^{++})\\ 0^+(2^{++})\\ 0^+(2^{++})\\ 0^+(2^{++})\\ 0^+(2^{++})\\ 0^+(2^{++})\\ 0^+(2^{++})\\ 0^+(2^{++})\\ 0^+(2^{++})\\ 0^+(2^{++})\\ 0^+(2^{++})\\ 0^-(1^{})\\ 0^-(3^{})\\ \end{array}$	ρ=(1990) • </th <th>1+(3) 0+(2++) 0+(2++) 1+(1) 0+(2++) 0+(2++) 0+(2++) 0+(2++) 0+(2++) 0+(2++) 0+(2++) 0+(2++) 0+(2++) 0+(2++) 0+(2++) R LIGHT es</th> <th>$\begin{array}{c} K^{*}(12^{\mu\nu}) \\ K_{2}(2\pi 70) \\ F_{3}(1780) \\ K_{5}(182) \\ K_{1}(1980) \\ K_{1}(1980) \\ K_{1}(1980) \\ K_{1}(245) \\ K_{2}(2250) \\ K_{3}(2320) \\ K_{3}(2460) \\ D_{1}(2420)^{2} \\ D_{$</th> <th>$\begin{array}{c} 1/2(1^{-}) \\ 1/2(2^{-}) \\ 1/2(3^{-}) \\ 1/2(2^{-}) \\ 1/2(0^{+}) \\ 1/2(2^{+}) \\ 1/2(2^{+}) \\ 1/2(2^{+}) \\ 1/2(2^{-}) \\ 1/2(5^{-}) \\ 1/2(5^{-}) \\ 1/2(5^{-}) \\ 1/2(5^{-}) \\ 1/2(1^{-}) \\ 1/2(1^{-}) \\ 1/2(1^{-}) \\ 1/2(1^{-}) \\ 1/2(1^{-}) \\ 1/2(1^{-}) \\ 1/2(1^{+}) \\ 1/2(2^{+})$</th> <th>$\begin{array}{c} & B_{c}^{\pm} \\ & & B_{c}^{\pm} \\ \hline \\ & & & \theta_{c}^{\pm} \\ \hline \\ & & & \theta_{c}^{\pm} \\ \hline \\ & & & \theta_{c}^{\pm} \\$</th>	1+(3) 0+(2++) 0+(2++) 1+(1) 0+(2++) 0+(2++) 0+(2++) 0+(2++) 0+(2++) 0+(2++) 0+(2++) 0+(2++) 0+(2++) 0+(2++) 0+(2++) R LIGHT es	$\begin{array}{c} K^{*}(12^{\mu\nu}) \\ K_{2}(2\pi 70) \\ F_{3}(1780) \\ K_{5}(182) \\ K_{1}(1980) \\ K_{1}(1980) \\ K_{1}(1980) \\ K_{1}(245) \\ K_{2}(2250) \\ K_{3}(2320) \\ K_{3}(2460) \\ D_{1}(2420)^{2} \\ D_{$	$\begin{array}{c} 1/2(1^{-}) \\ 1/2(2^{-}) \\ 1/2(3^{-}) \\ 1/2(2^{-}) \\ 1/2(0^{+}) \\ 1/2(2^{+}) \\ 1/2(2^{+}) \\ 1/2(2^{+}) \\ 1/2(2^{-}) \\ 1/2(5^{-}) \\ 1/2(5^{-}) \\ 1/2(5^{-}) \\ 1/2(5^{-}) \\ 1/2(1^{-}) \\ 1/2(1^{-}) \\ 1/2(1^{-}) \\ 1/2(1^{-}) \\ 1/2(1^{-}) \\ 1/2(1^{-}) \\ 1/2(1^{+}) \\ 1/2(2^{+}) $	$\begin{array}{c} & B_{c}^{\pm} \\ & & B_{c}^{\pm} \\ \hline \\ & & & \theta_{c}^{\pm} \\ \hline \\ & & & \theta_{c}^{\pm} \\ \hline \\ & & & \theta_{c}^{\pm} \\$
$f_1(1500)$ $f_1(1510)$ $f_2'(1525)$ $f_2(1565)$ $h_1(1595)$ $\pi_1(1600)$ $a_1(1640)$	$\begin{array}{c} 0 + (0 + 1) \\ 0 + (1 + + 1) \\ 0 + (2 + + 1) \\ 0 - (1 + - 1) \\ 1 - (1 - + 1) \\ 1 - (1 + + 1) \\ 0 + (2 + + 1) \end{array}$	f ₆ (2510) OTHER LIG	0 ⁺ (6 ^{+ +})	• D*(2007) ⁰ • D*(2010) [±]	$1/2(1^{-})$ $1/2(1^{-})$	• $D_{s1}(2536)^{\pm}$ • $D_{s2}(2573)^{\pm}$ • $\psi(4100)$ Y(4260) • $\psi(4415)$	$\begin{array}{c} 0(1^+) \\ 0(?^7) \end{array}$	• 7(11020) NON-qq
$r_2(1640)$ • $\eta_2(1645)$ • $\omega(1650)$ • $\omega_3(1670)$	$0^+(2^{-+})$ $0^+(2^{-+})$ $0^-(1^{})$ $0^-(3^{})$	Further States		$\begin{array}{c} D_0^*(2400)^0\\ D_0^*(2400)^\pm\\ \bullet \ D_1(2420)^0\\ D_1(2420)^\pm\\ D_1(2430)^0\\ \bullet \ D_2^*(2460)^\pm\\ D_2^*(2460)^\pm\\ D_2^*(2640)^\pm\\ \hline \\ CHARMED,\\ (C=S)\\ \bullet \ D_{S}^\pm\\ \bullet \ D_{S}^\pm\\ \bullet \ D_{S}^\pm\\ \bullet \ D_{S1}(2317)^\pm\\ \bullet \ D_{S1}(2460)^\pm\\ \bullet \ D_{S1}(2536)^\pm\\ \end{array}$	$\begin{array}{c} 1/2(0^+) \\ 1/2(0^+) \\ 1/2(1^+) \\ 1/2(1^+) \\ 1/2(2^+) \\ 1/2(2^+) \\ 1/2(2^+) \\ 1/2(2^+) \\ 1/2(2^+) \\ 1/2(2^+) \\ 0(2^+) \\ 0(0^-) \\ 0(0^-) \\ 0(0^-) \\ 0(0^+) \\ 0(1^+) \\ 0(1^+) \\ 0(1^+) \end{array}$	$\begin{array}{c} b\bar{b} \\ \hline \\ \eta_b(1S) \\ \bullet \ T(1S) \\ \bullet \ \chi_{b0}(1P) \\ \bullet \ \chi_{b1}(1P) \\ \bullet \ \chi_{b2}(1P) \\ \bullet \ T(2S) \\ T(1D) \\ \bullet \ \chi_{b2}(2P) \\ \bullet \ \chi_{b1}(2P) \\ \bullet \ \chi_{b2}(2P) \\ \bullet \ \chi_{b2}(2P) \\ \bullet \ T(3S) \\ \bullet \ T(10860) \\ \bullet \ T(1020) \end{array}$	$\begin{array}{c} 0^+(0^{-}+)\\ 0^-(1^{-}-)\\ 0^+(0^{+}+)\\ 0^+(1^{+}+)\\ 0^+(2^{+}+)\\ 0^-(1^{-}-)\\ 0^-(2^{-}-)\\ 0^+(0^{+}+)\\ 0^+(1^{+}+)\\ 0^+(1^{+}+)\\ 0^+(1^{-}-)\\ 0^-(1^{-}-)\\ 0^-(1^{-}-)\\ 0^-(1^{-}-)\\ 0^-(1^{-}-)\\ \end{array}$	

 $0(1^+)$ $0(?^?)$

D_{e2}(2573)[±]

Lepton Families

electrons and a neutrino

muons and a neutrino

taus and a neutrino

These sorts of patterns are a huge deal.

 ν_e $\left(\begin{array}{c} \nu_{\mu} \\ \mu \end{array} \right)$

Q

Identical in every way...except mass

The Particle Zoo?

Quarks

Gell Mann's 1964 version

fundamental fermions

in same league as electrons and neutrinos

Quark	Symbol	Rest Mass MeV/c ²	spin	Q	В	S
up	U	1.7 - 3.3	1/2	+2/3	1/3	0
down	d	4.1 - 5.8	1/2	-1/3	1/3	0
strange	S	101	1/2	-1/3	1/3	-1

discovered at Brookhaven within a year the "Omega minus" was discovered at Brookhaven National Lab S Λ^0 Λ + 0 D -1 $\sum *0$ $\Xi * 0$ -2 $\mathbf{T}\mathbf{0}$ -3 $-\frac{1}{2}$ <u>1</u> 2 <u>1</u> 2 3 <u>1</u> 2 -1 0 1 -1 1 0 Ι

the dominant Baryons

Particle	Symbol	Rest Mass MeV/c ²	spin	Q	В	S	Lifetime	dominant decay modes
proton	p	938.3	1/2	+1	+1	0	> 10 ³¹ y	
neutron	n	939.6	1/2	0	+1	0	920	$pe^-\bar{\nu}_e$
Lambda	Λ^0	1115.6	1/2	0	+1	-1	2.6 x 10 ⁻¹⁰	$p\pi^-, n\pi^0$
Sigma	Σ^+	1189.4	1/2	+1	+1	-1	0.8 x 10 ⁻¹⁰	$p\pi^0, n\pi^+$
Sigma	Σ^0	1192.5	1/2	0	+1	-1	6 x 10 ²⁰	$\Lambda^0\gamma$
Sigma	Σ^{-}	1197.3	1/2	-1	+1	-1	1.5 x 10 ⁻¹⁰	$n\pi^-$
Delta	Δ^{++}	1232	3/2	+2	+1	0	0.6 x 10 ²³	$p\pi^+$
Delta	Δ^+	1232	3/2	+1	+1	0	0.6 x 10 ²³	$n\pi^+, \ p\pi^0$
Delta	Δ^0	1232	3/2	0	+1	0	0.6 x 10 ²³	$n\pi^0$
Delta	Δ^{-}	1232	3/2	-1	+1	0	0.6 x 10 ²³	$n\pi^-$
Xi	Ξ^0	1315	1/2	0	+1	-2	2.9 x 10 ⁻¹⁰	$\Lambda^0\pi^0$
Xi	[1]	1321	1/2	-1	+1	-2	1.64 x 10 ⁻¹⁰	$\Lambda^0\pi^-$
Omega	Ω^{-}	1672	3/2	-1	+1	-3	0.82 x 10 ⁻¹⁰	$\Xi^0\pi^-, \ \Lambda^0K^-$

quark content	
uud	
ddu	
uds	
uus	
uds	
dds	
иии	
uud	
udd	
ddd	
uss	
dss	
SSS	

the dominant Mesons

Particle	Symbol	anti- particle	Rest Mass MeV/c ²	spin	Q	В	S	Lifetime	dominant decay modes	quark content
Pion	π^+	π^{-}	139.6	0	+1	0	0	2.6 x 10 ⁻⁸	$\mu^+ u_\mu$	$u \overline{d}$
Pi-zero	π^0	π^0	135	0	0	0	0	920	2γ	$\frac{1}{\sqrt{2}}(u\bar{u}+d\bar{d})$
Kaon	K^+	K^{-}	493.7	0	+1	0	+1	1.24 x 10 ⁻⁸	$\mu^+\nu_\mu, \pi^+\pi^0$	$u\overline{s}$
K-short	K_S^0	K_S^0	497.7	0	0	0	+1	0.89 x 10 ⁻¹⁰	$\pi^+\pi^-, 2\pi^0$	$dar{s},sar{d}$
K-long	K_L^0	K_L^0	497.7	0	0	0	+1	5.2 x 10 ⁻⁸	$\pi^{\pm}\ell^{\mp}\nu_{\ell}$	$dar{s},sar{d}$
Eta	η^0	η^0	548.8	0	0	0	0	< 10 ⁻¹⁸	$2\gamma, \pi^+\pi^-\pi^0$	$uar{u}, dar{d}, sar{s}$
Eta-prime	η^0 '	η^0 ′	958	1	0	0	0		$\pi^+\pi^-\eta$	$uar{u}, dar{d}, sar{s}$
Rho	ρ^+	$ ho^-$	770	1	+1	0	0	0.4 x 10 ²³	$\pi^+\pi^-, 2\pi^0$	$u \overline{d}$
Rho-naught	$ ho^0$	$ ho^0$	770	1	0	0	0	0.4 x 10 ²³	$\pi^+\pi^-$	$uar{u}, dar{d}$
Omega	ω^0	ω^0	782	1	0	0	0	0.8 x 10 ²²	$\pi^+\pi^-\pi^0$	$uar{u}, dar{d}$
Phi	ϕ	ϕ	1020	1	0	0	0	20 x 10 ⁻²³	$K^+K^-, K^0\bar{K}^0$	$s\overline{s}$

the now jargon

gets a little more straightforward

Hadrons: particles made of quarks.

Baryons: particles made of 3 quarks.

now defined:

now defined:

Mesons: particles made of 1 quark and 1 antiquark.

scatterings
now are
thought of
diferently

by following the lines...

 $\pi^+ + p \to \Delta^{++} \to \pi^+ + p$

Feynman Diagram, pre-1964:

in quark language:

is the world made of actual quarks?

or is this just a convenient organizing scheme

that's all Gell-Mann thought

But evidence started to accumulate that surprised everyone

quarks are indeed as real as electrons.

First piece of convincing evidence:

we can bang on them

individually...Feynman saw this first.

44

remember. the crucial thing in order to "see" something?

wavelength has to be about the size of the object

larger the momentum

the smaller the spatial resolving capability

scattering of an electron from a nucleus

slow electron, long wavelength photon

"sees" the whole nucleus

scattering of an electron from a nucleus

fast electron, medium-short wavelength photon

M

"sees" an individual proton in the nucleus

47

scattering of an electron from a nucleus

very fast electron, very-short wavelength photon

"sees" an individual quark in a proton or neutron That's how we became convinced in 1969 – the same sort of backwards scattering as Rutherford's

48

The Nobel Prize in Physics 1990

Jerome I. Friedman, Henry W. Kendall, Richard E. Taylor

Share this:

The Nobel Prize in Physics 1990

Jerome I. Friedman Prize share: 1/3

Henry W. Kendall Prize share: 1/3

Photo: T. Nakashima Richard E. Taylor Prize share: 1/3

The Nobel Prize in Physics 1990 was awarded jointly to Jerome I. Friedman, Henry W. Kendall and Richard E. Taylor "for their pioneering investigations concerning deep inelastic scattering of electrons on protons and bound neutrons, which have been of essential importance for the development of the quark model in particle physics".

Photos: Copyright © The Nobel Foundation

Share this:

To cite this page

MLA style: "The Nobel Prize in Physics 1990". *Nobelprize.org.* Nobel Media AB 2 014. Web. 20 Apr 2016. http://www.nobelprize.org/nobel_prizes/physics/laureates/1990/

particle:	up quark	
	symbol:	U
	charge:	+2/3
	mass:	1.7 to 3.3 MeV/c ²
	spin:	1/2
	category:	Fermion, I=+1/2,

B=1/3, S=0

particle:	down quark			
	symbol:	d		
	charge:	-1/3		
	mass:	4.1 to 5.8 MeV/c ²		
	spin:	1/2		
	category:	Fermion, I=–1/2,		

B=1/3, S=0

particle:	strange quark			
	symbol:	S		
	charge:	-1/3		
	mass:	101 MeV/c ²		
	spin:	1/2		
	category:	Fermion, $I=-1/2$,		

B=1/3, S=-1

shifting gears

the weak interaction needs a boson

the quantum relativistic field theory theme song:

this kind of magic:

If there's a field,

If there is a force...there's a field

there's a quantum to go with it.

Because Nature is Clumpy.

for the electromagnetic interaction:

the force is the electromagnetic force

the field is E & B

the clumpiness – the <u>quantum</u> – is:

The photon: γ

nteraction: tic force

Well, the Weak Force must have a field ...yadda yadda yadda

If there's a field,

If there is a force...there's a field

there's a quantum to go with it.

Because Nature is Clumpy.

for weak interaction:

the field must be a weak field...& Massive & electrically charged

the clumpiness - the quantum - must be Something else.

here's a weak interaction

neutron beta decay

the weak interaction here changes the bottom and the top of these doublets

Manipulate the graph in the now familiar way:

the muon decay is the same sort of

> in that second way of looking at it:

it again?

can a "photon" be forced to exist that governs the weak interaction?

It was a dream that the electromagnetic interaction

could have a weak interaction counterpart.

Feynman and Murray Gell-Mann worked out a consistent theory based on the idea of a "heavy" photon with electric charge.

"W" for "Weak" f and f' are different particles, but share the doublet

Notice that f and f' and W^{\pm} all have to have their electric charges assigned so that electric charge is conserved.

temporary entries into your table of primitive diagrams

so, a new primitive diagram

 $\begin{pmatrix} \gamma \\ \chi \\ W \end{pmatrix}$ pretend this is primitive for a moment.

Neutron beta decay:

for the Weak Interaction

63

keep track of the charge flow

there are 2 W charged states

 $n \to p + W^- \to p + e^- + \bar{\nu}_e$

+1 + -1 = +1 + -1 + 0**Q:**

So: W^- lowers the electrical charge by 1 W + raises the electrical charge by 1

= 0

here is where those weak "doublets" in come

the Weak Interaction connects them The particle doublets that we know so far:

Notice, that all of these transitions change the electric charge as well as the particle type

making these transitions is the W Boson's job.

"deep inelastic scattering"

hitting quarks individually

of course in a statistical fashion

neutrinos do it too...

analyses of these reactions, $\nu N \to \mu X \qquad eN \to eX$

- 1. confirm the point-like (?) nature of quarks
- 2. confirm their apparent loose-binding within nucleons (in a second)

3. confirm their fractional electric charges!

SO, new a primitive diagram

for the Weak Interaction with quarks, to go with the leptons

 $\bar{\nu}_e$

instead of what I had before:

there are still weak interactions

including transitions among quarks

The particle doublets that we know so far:

Notice, that all of these transitions change the electric charge as well as the particle type

making these transitions is the W Boson's job.

there are still weak interactions

including transitions among quarks

The particle doublets in quark language:

Notice, that all of these transitions change the electric charge as well as the particle type

making these transitions

NOW...your second entry into your

table of primitive diagrams

particle:	charm quark			
	symbol:	С		
	charge:	+2/3		
	mass:	1,270 MeV/c ²		
	spin:	1/2		
	category:	Fermion, I=0, B=		

"1974 Revolution"

1/3, S=0, C=+1
Strong interaction, again: The original question about nuclei... now in play for quarks: what holds the quarks inside of the baryons and mesons?

73

Gross, Politzer, and Wilczek

2004

"asymptotic freedom" in strong interactions

Nobelprize	e.org
The Official Web Site of the	Nobel Prize
Nobel Prizes Alfred No	bel Educational Video Pla
Home / Nobel Prizes / Nobel Prize in Phys	ics / The Nobel Prize in Physics 2004
About the Nobel Prizes	🖶 Printer Friendly
Facts and Lists	1901
Nobel Prize in Physics All Nobel Prizes in Physics	Sort and list Nobel Prizes and Nobel Laur
Facts on the Nobel Prize in Physics	The Nobel Prize in Physic
Prize Awarder for the Nobel Prize in Physics	W David J. Gross, H. David Politz
Nomination and Selection of Physics Laureates	Nobel Prize Award Ceremony
Nobel Medal for Physics	David J. Gross
Articles in Physics	H. David Politzer
Video Interviews	Frank Wilczek
Video Nobel Lectures	
Nobel Prize in Chemistry	
Nobel Prize in Physiology or Medicine	
Nobel Prize in Literature	
Nobel Peace Prize	
Prize in Economic Sciences	

David J. Gross

H. Dav

The Nobel Prize in Physics 2004 was awarded jointly to David J. Gross, H. David Politzer and Frank Wilczek "for the discovery of asymptotic freedom in the theory of the strong interaction".

Photos: Copyright © The Nobel Foundation

TO CITE THIS PAGE: MLA style: "The Nobel Prize in Physics 2004". Nobelprize.org. 10 Apr 2013 http://www.nobelprize.org/nobel_prizes/physics/laureates/2004/

Nobel Laureates Have Their Say Nobel Prize Award Ceremonies

Nomination and Selection of

	Home A-	z
Player	Nobel Organizations	
+ Share	🖂 Tell a Friend 🛛 📿 Comments	
	2012	
ur ≑	Prize category: Physics \$	
sics 2004 blitzer, Frank V	Vilczek	
	Ψ.	
id Politzer	Frank Wilczek	
s awarded ioir	itly to David J. Gross, H. David	

it's the glue that holds everything together virtually

Predicted the existence of the Strong Messenger Particle: the **Gluon**

0000

my gluon

third entry into your

table of primitive diagrams

there are two amazing things

about gluons

thing 1

they self-interact

a photon propagates the electromagnetic force...but it **does not** have an electric charge

the gluon propagates the strong force...and it **DOES** have a "strong charge"

This has significant consequences...almost magical

fourth and fifth entries into your

table of primitive diagrams

thing 2

their force field is the opposite of electromagnetism, or gravity

force of attraction or repulsion for electromagnetic fields

ah, but the gluon is odd

force of attraction for gluon fields

g

the further away you get, the **STRONGER** the quark-quark attraction is!

pull apart 6 em

called

quark confinement

quarks cannot be "free"

The energy in the field is so high...that it pops a new quark-antiquark pair out of the vacuum.

We don't see individual quarks or gluons

they make more quarks and gluons

and interact very quickly into a cascade of particles

"quark-gluon jets"

"hard" quark production

particle:	gluon	
	symbol:	g
	charge:	0
	mass:	0
	spin:	1
	category:	Strong Vector Bo

why does the proton weigh?

gluons

Field Energy

here's the elementary particles story

circa 1975

the messengers

spin 1 Bosons

circa 1980

the photon "propagates the electromagnetic force"

the W Boson

"propagates the weak force"

0000

the gluon

"propagates the strong force"

say tuned.

 $\begin{pmatrix} u \\ d \end{pmatrix} \qquad \begin{pmatrix} c \\ s \end{pmatrix}$

	bottom quark			
symbol: b				
charge: -1/3 e				
mass: 4.5 GeV/c ²	= 4.5 p			
spin: 1/2				
category: Fermion, qu	Jark			

1977 at Fermilab

1995: Discovery of the top quark

The two experiments at the Fermilab collider frantically searched

We collected data for three straight years of running, 24/7 An intense analysis effort actually kept up with the datacollection...

DØ, our experiment, found a single event and published it in 1992...

suspicious, but one event is not definitive

CDF, the other experiment, thought they had "evidence" in spring of 1994

published it, cautiously - the rate of production was too high, according to expectations by x2

discovery

In the winter of 1994-95 we began to think we had it

led by Harry Weerts, an MSU professor

We thought we were on to something and wanted to be first, but we needed to be sure

that meant 2 months of furious argument, calculations, writing, and yelling

"Was it background?" "How significant was the signal?"

Things fell apart, and came together over and over.

finally: "top quark" discovered in 1995

by our two experiments at Fermilab

with MSU faculty and students intimately involved

PHYSICAL REVIEW LETTERS VOLUME 74, NUMBER 14 **Observation of the Top Quark** The D0 Collaboration reports on a search for the standard model top quark in pp collisions at $\sqrt{s} = 1.8$ TeV at the Fermilab Tevatron with an integrated luminosity of approximately 50 pb⁻¹. We have searched for ri production in the dilepton and single-lepton decay channels with and without tagging of b-quark jets. We observed 17 events with an expected background of 3.8 ± 0.6 events. The probability for an upward fluctuation of the background to produce the observed signal is 2 × 10⁻⁶ (equivalent to 4.6 standard deviations). The kinematic properties of the excess events are consistent with top quark decay. We conclude that we have observed the top quark and measured its mass to be 199^{+19}_{-21} (stat) ±22 (syst) GeV/e¹ and its production cross section to be 6.4 ± 2.2 pb. PACS numbers: 14.65.Ha, 13.85.Qk, 13.85.Ni VOLUME 74, NUMBER 14 PHYSICAL REVIEW LETTERS Observation of Top Quark Production in $\overline{p}p$ Collisions with the Collider Detector at Fermilab We establish the existence of the top quark using a 67 pb-1 data sample of pp collisions at $\sqrt{3}$ = 1.8 TeV collected with the Collider Detector at Fermilab (CDF). Employing techniques similar to those we previously published, we observe a signal consistent with if decay to WWbb, but inconsistent with the background prediction by 4.8 or. Additional evidence for the top quark is provided by a peak in the reconstructed mass distribution. We measure the top quark mass to be 176 ± 8(stat) ± 10(syst) GeV/c², and the *ii* production cross section to be 6.8^{+2.6}/_{2.4} pb. PACS numbers: 14.65.Ha, 13.85.Qk, 13.85.Ni

February 24th, 11AM, we submitted our discovery paper to Physical Review Letters

March 2, 1995 the announcement was made at Fermilab

particle:	top quark			
	symbol:	t		
	charge:	+2/3 e		
	mass:	172.0±2.2 GeV/c ²		
	spin:	1/2		
	category:	Fermion, quark		

² = 172 p

the weak interactions

still operate with the increased doublet sets

The complete (circa 2000) particle doublets:

Q
+2/3
$$\begin{pmatrix} u \\ d \end{pmatrix}$$
 $\begin{pmatrix} c \\ s \end{pmatrix}$

$$\begin{array}{c} \mathbf{0} \\ \mathbf{-1} \end{array} \begin{pmatrix} \nu_e \\ e \end{pmatrix} \qquad \begin{pmatrix} \nu_\mu \\ \mu \end{pmatrix}$$

the weak interactions

still operate with the increased doublet sets

The complete (circa 2000) particle doublets:

 $\begin{array}{c} \mathbf{0} \\ \mathbf{-1} \end{array} \begin{pmatrix} \nu_e \\ e \end{pmatrix} \longrightarrow W \begin{pmatrix} \nu_\mu \\ \mu \end{pmatrix} \longrightarrow W \begin{pmatrix} \nu_\tau \\ \tau \end{pmatrix} \searrow W$

the modern picture

of the elementary particle patterns

circa 2000

and still current

the lepton families...lepton "doublets"

and their interactions: 🗶 no, 🖌 yes.

leptons	$ u_e$	e	$ u_{\mu}$	μ	$ u_{ au}$	au
strong	×	×	×	×	×	×
electromagnetic γ	×		×		×	
weak MM W						
gravitational						

 $\begin{pmatrix} \nu_e \\ e^- \end{pmatrix} \quad \begin{pmatrix} \nu_\mu \\ \mu^- \end{pmatrix} \quad \begin{pmatrix} \nu_\tau \\ \tau^- \end{pmatrix}$

the modern picture

of the elementary particle patterns

circa 2000

the quark families...quark "doublets"

and their interactions: 🗶 no, 🖌 yes.

quarks	U	d	С	S	t	b
strong \mathcal{O}						
electromagnetic						
weak \mathcal{W}						
gravitational						

107

The Particle Zoo?

instead of the Municipal zoo of particles

we have a petting zoo of quarks and leptons

The Particle Zoo? tamed.

shifting gears

the weak and electromagnetic forces are one.

"phase transitions"

not a subject of **Particle Physics**

we thought

but we stole a theory from materials scientists

when there has been a symmetry change, that's essentially the definition of a phase change: Pierre Curie

before: every direction is identical

think about a phase transition

what a physicist sees is a change of symmetry

after: now there are special directions

there are basically 2 kinds of boiling

1st Order nucleation

2d Order continuous

Boiling starts in various locations inside of liquid water

Other kinds of phase transitions happen uniformly throughout the substance.

you probably are mostly familiar with: freezing melting boiling

These "2nd Order," phase transitions are continuouseverywhere:

crystallization changes of density magnetism superconductivity superfluidity plasma transition electron gases Bose gases

ferromagnet

most familiarly:

iron

a

also:Co, Ni, Li gas

many compounds

If atoms are far apart...a quantum mechanical effect keeps the outer electron spins aligned, minimizing the electrostatic energy

if the atoms are attached to an Iron lattice... the electron spins can add up

that's a permanent ferromagnet

in 2 - dimensions

is he talking about phase transitions you're asking yourself?

Superconductivity

Superfluidity 4.2 K - liquifies 2.17 K - superfluid

room temperature, insulator below 1.9 K - superconducting LHC magnets, NSCL cyclotron

a little model of an ideal ferromagnet

in one – dimension At a low temperature – like room temperature:

M is maximum

M, "magnetization": a measure of how magnetized

"ground state" – state of lowest energy –

when all electronic magnets are aligned

There is a high temperature – the "Curie Point":

then the "ground state" – state of lowest energy –

when all electronic magnets are random

M becomes zero

