

Day 19, 28.03.2019

Quantum Mechanics 1.5

1

today is opening day

Ray Brown week

remember"

waves?

just some facts, Ma'am

maximum height of the disturbance: "Amplitude," A. "Intensity" is ~ A^2

A

time to repeat: "Period" T. *rate* of repetition: "Frequency," *f*. *distance* through which it repeats: "Wavelength," λ m

$$v = \frac{\lambda}{T}$$

$$v = \lambda f$$

4

speed of a wave relation alert: $v = \lambda f$ refers to: middle C ~ 4 ft (=1.2 m) wavelength f = 262 Hz, so speed of sound: example:

 $v = 1.2 \times 262 = 314 \text{ m/s}$

that's right

interference

can always make a third wave out of the sum of two waves

for us, two kinds

traveling waves

the disturbance translates

standing waves

the disturbance marches in place

Standing room only

"standing wave"

the sum of two traveling waves moving in opposite directions

8

Quantum Mechanics

in the 1890's things were heating up

I mean, literally.

color = temperature

why?

Gassan Sadatoshi

http://www.howstuffworks.com/sword-making.htm/printable

amount of each wavelength: depends **ONLY** on temperature

jargon alert:

"Blackbody radiator"

A little more complicated - glass, metals, soot...all behave differently Basically think of a "Blackbody Radiator" as a perfectly absorbing, perfectly radiating substance.

jargon alert:

Black Body Radiation

refers to:

entomology:

example:

A thermal absorber that perfectly absorbs all wavelengths of EM radiation and emits according to its temperature "black" in the sense of a perfect absorber...no

"black" in the sense of reflection

A cavity with a hole, a near-black object, a star...

three materials

why? ... remember this from February:

soot full absorption

E applies a force on any Q

E field for example:

accelerated charges produce the value of the strength of the field oscillate on time ind accelerates a charge Electromagnetic radiation

Ε

three materials

the electrons are bound differently

soot full absorption

two aspects to the idea of a "black body"

the absorption part

the radiation part

soot full absorption

soot

16

still radiating it's

absorbs all radiation and emits particular radiation

blackbody radiators

many objects radiate like nearly perfect blackbody radiators furnaces you, me stars the universe

...

experimental blackbody radiator an

an empty volume with a small hole

like a perfect absorber

make your fingers think

everything with a temperature radiates electromagnetic waves

sun

Sun's warmth? notsomuch

0.00005

0.00004

a range of wavelengths for each temperature

what would Maxwell's theory say?

nonsense.

a major problem.

imagine a cavity with radiation inside

140 falls at long 120 wavelengths 1646 100 Energy, arbitrary units 80 60 1449° 40 1259° 20 998° 2 4 Wavelength, μ long wavelength \rightarrow

The Data:

high frequency

Maxwell's theory predicts infinite energy at short wavelengths

Maxwell-like theory: <u>no limit</u> to the number of different short wavelengths (= high frequencies) that could fit

a universal phenomenon...

Why is there such a strict relationship between temperature and color?

a problem in electromagnetism & thermodynamics

Why? Was a major late 19th century question.

the solution to heat radiation

came in 1900

and then expanded in 1905

Max Planck 1858-1947

one of the good guys

Planck could only get a solution

turnover, and falls at short wavelengths

if he restricted energies of emitted electromagnetic radiation

long wavelength \rightarrow \leftarrow high frequency $v = \lambda f$

what in the world does that mean?

Good question:

"It was an act of desperation. For six years I had struggled with the blackbody theory. I knew the problem was fundamental and I knew the answer. I had to find a theoretical explanation at any price..."

Energy of radiation is parceled in particular amounts

Planck: "bundles"

Philip Lenard 1902: "quanta" Planck's Law: E = nhf

 $h = 6.62606896(33) \times 10^{-34}$ J-sec

2 "E's" going on...this one's Electric Field vector

electric field vector magnitude **E** could be

relation alert:

Planck's Law

refers to:

E = hf

Energy of radiation comes in a

example:

photoelectric effect

discrete amount for each frequency

constant of nature:	Planck's Constant, h	
	value:	<i>h</i> = 6.62606896
	units:	Energy - time
	usage:	everything at at sizes

5(33)×10-34 J-sec

comic and smaller

for a given frequency (wavelength) the only energies that can be radiated: 1hf, 2hf, 3hf, 4hf....

So, for 10 micron infrared wave, $E = n(3 \times 10^{-13} J)$

E's must be = 3×10^{-13} J, 6×10^{-13} J, 9×10^{-13} J...

that is: 5 x 10⁻¹³ J, 7.8 x 10⁻¹³ J, etc are not possible

37

it's as if

no matter how hard you pump your amplitude is choppy

the lack of light at the short wavelengths

= high frequencies?

Energy

Classical radiation theory predicted an infinite amount of energy at high frequencies....the "Ultraviolet Catastrophe"

maximum E, depending on temperature classically, all frequencies are probable frequency

for Planck

electromagnetic waves

can still be anything

the radiator walls "quantize" emission

EM can be any frequency radiator (the container wall) can produce only particular frequencies

Not a statement about EM! A statement about the material radiators of energy!

perfect analogy

sound

piano

sound can be any frequency piano can produce only particular frequencies

Not a statement about sound! A statement about pianos!

He's Back

perfect analogy

sound

piano

sound can be any frequency

Not a statement about sound! A statement about pianos!

Einstein said:

in that famous 1905 year

Planck's bundles are not about the walls...the radiators

It is a statement about light (electromagnetism)

Light is itself "quantized"as particles:

these particles are now called: "photons," γ they have no mass

hold the phone.

How could things so opposite be combined into one reality? A particle is HERE:

Einstein was motivated by experiment: "Photoelectricity"

found by Hertz in his confirmation of Maxwell's waves

Ultraviolet light causes electrons to stream from surface of some metals

- 1. no electrons until a particular frequency then, with higher frequency they come out with more energy
- 2. raise the intensity...get more electrons

The light-wave

huh?

expect <u>higher</u> energy electrons

Using Planck's formula E = hf

the "Photoelectric Effect" makes sense.

the electrons are bound a little...so, they get released above a particular frequency, f so a particular E is required

Intensity is just more and more photons in the light

kicking out more and more electrons

photoelectric effect

everywhere:

photodiodes

smoke detectors, CD players, remote controls...

photocells

packed into "pixels" and arrays of pixels:

CCDs (charged coupled devices)

The facts:

1. no electrons <u>until a particular frequency</u> *then, with higher frequency they come out with more energy*

2. raise the intensity...get more electrons

The light-wave expectation:

huh?

expect <u>higher</u> <u>energy</u> electrons

remember the formula

E = hf

remember about waves:
$$V$$
 =

$$f$$
 :

- the smaller the energy
- the larger the energy
- the smaller the wavelength

$$E = \frac{hc}{\lambda}$$

the higher the frequency the higher the energy the lower the energy the lower the frequency

the larger the wavelength

Einstein made a prediction: treat light like billiardballs

and cause collisions

like particles

 $\gamma + e \rightarrow \gamma' + e'$

the photon loses energy

the electron gains energy

Einstein made a prediction: treat light like billiardballs

and cause collisions

like particles

Fig. 4. Spectrum of molybdenum X-rays scattered by graphite, compared with the spectrum of the primary X-rays, showing an increase in wave-length on scattering.

the photon loses energy

 $\gamma \rightarrow$

 E_B

longer wavelength - lower energy

The "Compton Effect"

"Compy"

I played with his grandson as a kid

which I find absolutely bizarre

Nobelprize.org The Official Web Site of the Nobel Prize **Nobel Prizes** Alfred Nobel Educational Video Player Home / Nobel Prizes / Nobel Prize in Physics / The Nobel Prize in Physics 1927 About the Nobel Prizes 🖶 Printer Friendly | 🕀 Share Facts and Lists Nobel Prize in Physics All Nobel Prizes in Physics Sort and list Nobel Prizes and Nobel Laureate Facts on the Nobel Prize in Physics The Nobel Prize in Physics 1927 Prize Awarder for the Nobel Arthur H. Compton, C.T.R. Wilson Prize in Physics The Nobel Prize in Physics 1927 Nomination and Selection of Physics Laureates Arthur H. Compton Nobel Medal for Physics C.T.R. Wilson Articles in Physics Video Nobel Lectures Nobel Prize in Chemistry Nobel Prize in Medicine Nobel Prize in Literature Nobel Peace Prize Prize in Economic Sciences Nobel Prize Award Ceremonies

Arthur Holly Compton Charles Thomson

The Nobel Prize in Physics 1927 was divided equ Compton "for his discovery of the effect named a Rees Wilson "for his method of making the paths visible by condensation of vapour".

Rees Wilson

Photos: Copyright @ The Nobel Foundation

TO CITE THIS PAGE:

MLA style: "The Nobel Prize in Physics 1927". Nobelprize.org. http://nobelprize.org/nobel_prizes/physics/laureates/1927/

Terms of Use

The "Compton Effect" or "Compton Scattering"

	Home F/	AQ Press	Contact Us
Nobel Organizations			Search 🔸
Tell a Friend Q Comments			
2010 1927 Prize category: Physics \$			
V			
∇			
Ψ.			
ally between Arthur Holly after him" and Charles Thomson of electrically charged particles			
7 Feb 2011			
	Copyrigh	t © Nobel Med	ia AB 2011
	Home F/	AQ Press	Contact Us
	_		

our second elementary particle, 1923

the photon (aka "gamma")

particle:	photon, γ	
	symbol:	γ
	charge:	0
	mass:	0
	spin:	1
	category:	an intermedia
		a messenger

ate vector boson, particle

Compton scattering

Space diagram

space - x

Compton scattering

spacetime diagram

aka, *Feynman* diagram

space - y y e e space - x

draw the Feynman diagram for Compton Scattering

$$\gamma + e \rightarrow \gamma' + e'$$

space - x

this reaction will get a technical modification later

time

the definitive proof that light acts like a particle.

How is that possible?

Particles come in whole sizes - no parts, no fractions.

Remember what "makes" a wave...

Waves interfere with one another.

What makes wave behavior in your life?

How about hearing around corners?

Stay tuned...as it will become weird.

wavelength is the key

look at the relative sizes of openings and barriers compared to the wavelength

> First, think about water waves, then about light waves.

imagine two shapes of waves

on water

"plane wave"

from side:

"circular wave"

waves

one tap

solid- crest dashed - trough

interference again

two taps

"node": a trough

"crest": a peak

solid- crest dashed - node

this is it

THE smoking gun of wave behavior: interference

keep those in mind

1 and 2 taps

Another smoking gun of wave-behavior (as opposed to particle behavior)

dramatic images from oceans

66

now we know the answer

about hearing around corners

wavelength of sound? about 1m

middle C, f = 256 Hz

which is about door-sized

look at
it from:

the side where the waves are coming at you

the relative size of the gap

determine the apparent diffraction amount

increasing gap relative to wavelength

> that's why you can't see around doors

this is for water

close to the slits

for light...many, many wavelengths away from the slits...stuff happens