
Chapter 2

Everyone Needs Tools

A little math

René Descartes by Franz Hals, circa 1649

René Descartes (1596-1650)

“When I imagine a triangle, even though such a figure may exist nowhere in the world except in my thought,
indeed may never have existed, there is nonetheless a certain nature or form, or particular essence, of this
figure that is immutable and eternal, which I did not invent, and which in no way depends on my mind.”
Meditations on First Philosophy (1641)

It’s always amazing to me , just how much we depend on the collaborative work of a handful of

people from the 1600s. There must have been something in the water....in France, Italy, Britain, and

Holland because this was a time of genius and courage. From people in this period—a number of

whom we’ll become familiar with—we received a way of thinking about, talking about, and poking

at the world. René Descartes is one of my particular favorites. Let’s learn a little bit about him.
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2.1 Goals of this chapter:

• Understand:

– Simple one-variable algebra.

– Exponential notation.

– Scientific notation.

– Unit conversion.

– Graphical vector addition and subtraction.

• Appreciate:

– The approximation of complicated functions in an expansion.

• Be familiar with:

– Descartes’ life.

– The importance of Descartes’ merging of algebra and geometry.

2.2 A Little Bit of Descartes

The 17th century and just before saw a proliferation of “Fathers of –” figures: Galileo, the Father of Physics;

Kepler, arguably the Father of Astrophysics, and Tycho Brahe, the Father of Astronomy. But the Grand-

daddy...um...Father was René Descartes (1596-1650), generally considered to be the Father of Western

Philosophy and a Father of Mathematics.1 If you’ve ever plotted a point in a coordinate system, you’ve1 Who’s your daddy, indeed.

paid homage to Descartes. If you’ve ever plotted a function, you’ve paid homage to Descartes. If you’ve

ever looked at a rainbow? Yes. Him again. If you ever felt that the mind and the body are perhaps two dif-

ferent things, then you’re paying homage to Descartes and if you were taught to be skeptical of authority

and to work things out for yourself? Descartes. But above all—for us—René Descartes was the Father of

analytic geometry.

He was born in 1596 in a little French village now called, Descartes.2 By this time Galileo was a profes-2 Coincidence? What do you think.

sor in Padua inventing physics and Caravaggio was in Rome inventing the Baroque. Across the Channel

Shakespeare was in London inventing theater and Elizabeth had cracked the Royal Glass Ceiling and was

reinventing moderate rule in England. This was a time of discovery and dangerous opinion when intel-

lectuals began to think for themselves. That is, this is the beginning of the end of Aristotle’s suffocating

domination as The Authority on everything.33 After all, by the time St. Thomas absorbed Aristotle into Catholic
dogma, he was called The Philosopher.
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Descartes’ mother died soon after childbirth when he was only a year old and he was raised by relatives.

His’ father was an upper-middle class lawyer who spent little time with his children.4 He was sent to a 4 When Descartes’ father died, his brother failed to notify him (he
found out through one of his correspondents) and he decided he was
too busy to attend the funeral. Not exactly a close family. The simi-
larities with Newton’s childhood are striking.

prominent Jesuit school at the age of 10 and only a decade later emerged from the University of Poitiers

with the family-expected law degree. Apart from his success in school, the most remarkable learned skill

was his lifelong manner of studying. He was sickly as a child and had been allowed to spend his mornings

in bed, a habit he retained until the last year of his life.5 5 There’s a story there...
One of the benefits of his schooling was a program to improve his physical conditioning, enough so

that he became a proficient swordsman and soldier—he wore a sword throughout his life as befitting his

status as a “gentleman.”6 And yes, he was essentially a soldier of fortune. During the decade following 6 He still worked in bed every morning until noon.

his graduation, he would alternate his time between combat assignments in various of the innumerable

Thirty Year’s War armies and raucous partying in Paris with friends.7 7 He was a talented gambler, as befitting a mathematical mind.
Somewhere in that period Descartes became serious and decided that he had important things to say.

He wrote a handful of unpublished books and maintained a steady correspondence with intellectuals

in Europe, becoming well-known through these letters. Catholic France and of course Italy, were be-

coming intolerant of challenges to Church doctrine and he moved to the relatively casual Netherlands in

1628. Mostly a good move: he’d been inspired by Galileo’s telescopic discoveries and became a committed

Copernican and in 1633 was completely spooked by the Italian’s troubles with the Inquisition.8 However, 8 That year, one of his major books, The World, was ready for publi-
cation, but he delayed it until after his death. In World, he expounded
Copernicanism, but also provided for a reason why the planets cir-
cled the sun. A mechanism that Newton demolished with gusto.

he had trouble with some evangelical protestant leaders in Holland.

Little did Descartes know that he was a mathematical genius. After study as a “mature” student at the

University of Leiden, he found that he could solve problems in geometry that others could not. His de-

votion to mathematics and especially the rigor of the deductive method stayed with him and turned him

into a new kind of philosopher. The logic of deduction and the certainty of mathematical demonstration

were his philosophical touchstones.

Remember “deduction”? All squirrels are brown; that animal is a squirrel; therefore, that animal is

brown kind of arguments? The important thing about this string of phrases is not that animal’s color,

but that the conclusion cannot be doubted if the two premises are true. Since Plato, “What can I know

for sure?” was an essential question. For that particular Greek, things learned through your senses are

untrustworthy. Only things you can trust are ideas which are eternal, outside of space and time. For other

famous Greeks, you learn about the world through careful observation. Famously, Descartes convinced

himself that he had discovered a method to truth: whatever cannot be logically doubted, is true.
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2.2.1 Descartes’ Philosophy

This is not the place to teach the huge subject of Descartes’ philosophy. But there are two aspects of his

work that directly influence the development of physics: what can we know and what is the nature of the

natural world.

Descartes believed he’d found the formula for determining what’s true: when an idea is clear and dis-

tinct, which means incapable of being doubted, then you can believe it. His method was to keep doubting

everything until you reach a point in this thought-process that can’t be doubted.9 The point he reached9 In this way you reduce a complex problem to a more manageable
one. . . one of his essential components to his “analytic philosophy.” was the recognition that he was doing the doubting. Since that can’t be doubted, then what he’s learned

that’s true is: thought exists. One more step to I exist, because it is I who is doing that thinking: “Cogito

ergo sum”10 was his bumper sticker for truth.10 ”I think, therefore I am.” Words to live by.

The rest of his argument is a little shaky but this is the beginning of dispassionately and vigorously

analyzing a philosophical problem, setting a high bar for argument. Of course, Medieval thinking was not

friendly to the idea that everything can be doubted. The Bible and pretty much all that Aristotle wrote was

off-limits. In fact, under the rules of thought not only could neither source be doubted, those sources were

the only authority used to determine truth and falsity. Descartes pretty much changed that in philosophy.

He called his method “analytic” and it’s essentially applying mathematical problem solving strategies

to philosophical questions. Hence, history’s assignment of paternity to him for Western Philosophy.He said later that he made this discovery about doubt while still a sol-
dier and holed up on a snowy night alone in a remote cabin. Some-
times his military escapades were real combat, but mostly it seems
like he had a lot of leisure time.

For our purposes, what he decided were that true things about the world could be obtained through

pure thought. This is the “Rationalist” philosophy of which he is the king. This is in the spirit of Plato,

but unlike Descartes, he gave up on the sensible world as simply a bad copy of the Real World, which is

one of Ideas...”out there” somewhere. By contrast, Descartes asserted that there are two substances in the

universe. One is mind and the other is matter. Understanding the universe means gaining knowledge of

both by blending thinking with observing.

We’ll see that physics takes some inspiration through Descartes’ approach. Theoretical physicists are

often motivated by knowledge gained through thought—and always mathematics—and many work as if

those thoughts are representing the world.

This two-part universe is now called Cartesian Dualism and was all the rage when Newton was a stu-

dent. But the important thing to take away from this is that Descartes is the proud proponent of the

notion that true knowledge can be obtained purely through thought. The counter to this Rationalist be-

lief is Empiricist belief, that knowledge can only be obtained through observation (and in modern form,

experiment).

Definition: Rationalism.
The only test of and source of knowledge is reason.

Definition: Empiricism.
All knowledge originates in experience—through experiment
and observation.

The other aspect of Descartes’ philosophy that matters11 is his notion of Mechanism. The Renaissance
11 no pun intended. . . sort of. was saturated with ideas of nature that we’d consider magic. Nature was infused with occult properties,
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that it is almost alive with “active principles,” even human-like in ways. Of course, astrology, alchemy,

signs and numerology, Cabala, black magic and white natural magic, and so on were aspects of organized

occultism. But it went deeper. People lived lives, tended the sick, and found explanations for natural phe-

nomena based on the assumption that what we would call inert natural objects were alive and possessed

magical powers. This continued a long-standing philosophical discussion about Qualities. Is the boiling

pot hot because it possess the innate quality of “hotness”?

Figure 2.1: plenum

Magical thinking was a threat to the Church and Descartes also subscribed to the growing program of

ridding nature of these features. Things in the world are not possessed of innate features like hot or cold,

blue or red, and so on. These for Descartes are attributes not innate qualities. “Things” possess...place.

Now we’ll think a bit later about what constitutes space, but for Descartes and others, space is determined

by the extent of objects. In fact the only aspects of matter that are “clear and distinct” (and hence true) are

that matter has the properties of spatial extent (length, width, height) and motion.

He needed to have a mechanism to explain everything in the material world. He explained motion as

the point-to-point pushing of material objects that we see (planets) by innumerable, small-sized, varied

atoms which are indivisible. This “plenum” of stuff is moving, initiated by God, and they preserve that

motion as they transmit it to all moving material objects.12 It’s communicated to the planets, through

12 Remember this when we get to momentum and energy!

vortices, as in Fig. 2.1 from The World.

Likewise magnetism. Boy, that’s an occult-ish phenomenon if there ever was one. To Descartes mag-

netism was propagated by little, tiny left-handed screw-like object that find threaded holes in iron so as to

attract or repel. Gravitation is another kind of material experience. First, Descartes hypothesized about a

material cause for phenomena and then deduced the consequences.

Descartes paved the way for a reasoned approach to physics, that turns out to have been a part of

the story. He motivated Newton and helped European thinkers to find their way to independent ideas,

shedding the overbearing weight of Aristotelianism and Church dogma.

But this chapter is devoted to mathematics.

2.2.2 Descartes’ Algebra-fication of Geometry

...or geometrification of algebra! Whatever. Descartes brought geometry and algebra together for the first

time by reinterpreting the latter and inadvertently, rendering the former less important.13 13 for a while.

Descartes pulled the very new, very unsophisticated new method of “algebra” to a role of supremacy

over geometry. He did this by linking the solution of geometry problems—which would have been done

with rule-obsessive construction of geometrical proofs—to solutions using symbols. He did this work in a
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small book called Le Géométrie (The Geometry), which he published in 1637, the same year he published

his Discourse on Method.1414 Geometry can be considered an appendix to the Discourse.

He instituted a number of conventions which we use today. For example, he reserved the letters of

the beginning of the alphabet a,b,c, ... for things that are constants or which represent fixed lines. An

important strategic approach was to assume that the solution of a mathematical problem may be un-

known, but can still be found and he reserved the last letters of the alphabet x, y , z... to stand for unknown

quantities—variables. He further introduced the compact notation of exponents to describe how many

times a constant or a variable is multiplied by itself.

Figure 2.2: geometrymultiply

Prior to Descartes, ab would be the product of a and b but explicitly refer to the area of a rectangle

bounded by legs of lengths a and b. a3 would be the volume of a cube. There would be no such thing as

abcd or a4 because after all, nature has no more dimensions than 3. So the early algebra was confined to

a strictly dimensional context. Descartes broke with that and explored equations of higher powers, even

showing that equations of higher powers could be reduced to lower power equations and so on until a

solution could be found. He did this algebraically and geometrically, side by side. In fact, Le Géométrie is

just one example worked out after another: it’s solutions-oriented. And it’s abstract. There’s no need to

identify “things” to the variables, although one could do so if desired.

Just as arithmetic has addition, subtraction, multiplication, division, and square roots...so to he found

geometrical interpretations of these operations. His geometrical description of multiplication—not refer-

ring to an area—is instructive of how he did things. FIgure 2.2 shows a figure from Le Géométrie. Using his

notation, we immediately come upon a new “invention” of his: unity. A line of length “1” could be chosen

arbitrarily, and then manipulated.

In Fig. 2.2 I’ve overlaid red letters in the fashion that Descartes would have, assigning a single letter to

represent a line. The lines DE and AC are both parallel and so the triangles BED and BC A are similar.

From elementary geometry, because of their similarity, we would have

b

d
= c

a
.

Now he does this clever thing with “1” and assigns the length AB to have length 1 so that we have

b

d
= c

1
.

and so the product of cd = b. No areas. A brand new use of the brand new algebra!

Here’s another example from Le Géométrie. Supposed you want to find the square root of a quantity.

Figure 2.3 is again from his book. His trick here is to assign the distance G H to be an arbitrary length x1515 See? Algebra with unknowns.

and the distance G I to be y . His goal is to compute the
p

y for this abstract situation. Again, he uses the
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“1 trick” and makes FG = 1. The end result is that y =
p

x and the problem is solved in general terms and

in a way that could be measured with a ruler. Like Euclid would have liked.

Figure 2.3: root

The early translators of algebra considered equations in two unknowns—some f (x, y) = 0—to be im-

possible. Descartes actually found a way by treating the locus of points on a line as indeterminant, some

abstract x. GIven any particular location along x however, another corresponding to the other unknown

variable could be identified. He called such a point y and then worked to find solutions to particular prob-

lems that might be different depending on what the value of x was...but he did it in a way that was general

for any x. This is the first example of what we’d now refer to as an axis. He didn’t actually use two axes, but

he still solved problems for an unknown y in terms of a parameter x. He called one of these the abscissa

and the other, the ordinate.

Mathematicians picked up on these ideas and extended them into the directions that we now love. One

of those was John Wallis (1616-1703), a contemporary of Isaac Newton who learned from Wallis enough

to construct the general Binomial Theorem.

The use of perpendicular axes, which we call x and y stems from Descartes’ inspiration which is why

they’re called Cartesian Coordinates.

Descartes managed to get himself into a dispute with a Calvinist theologian, Gisbertus Voetius who

wanted his university to officially condemn the teaching of “Cartesian Philosophy” as atheistic and bad

for young people. Descartes responded by printing a reaction which was posted on public kiosks. This

must have been quite a sight! In any case, Descartes began to imagine that his time in the Netherlands

was coming to a close. An admirer, the Queen Christina of Sweden, was an intellectual of sorts and invited

Descartes to Stockholm to work for her court and to teach her. She even sent a ship to Amsterdam to pick

him up. He eventually accepted the position and this was the beginning of the end for him.

She required his presence at 4 AM for lessons. This, from the fellow who had spent every morning of

his life in bed until noon! He caught a serious respiratory infection and died on February 11th, 1650 at the

age of only 53.

We moderns owe an enormous debt to this soldier-philosopher-mathematician. Both for what he said

that was useful and for what he said that was nonsense, but which stimulated productive reaction. In

what follows from Section 2.5 there is a direct line from every word back to René Descartes.

2.3 Introduction

In this chapter we’ll do some old things and some new things. Some of the old things will be mathematical

in nature, while some of the new things will include some terminology and some techniques. I promise
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that the math will not be hard and we’ll get through it together. We’ll develop just a few of these tools that

we’ll return to repeatedly: simple algebra, exponents, unit conversions, and powers of ten. It will come

back to you.

But I want to start with some topics which are timely and confusing to non-specialists. What are we

doing when we “do” science?

2.4 It’s Theory, All the Way Down

Coming.

2.5 The M Word

The language of physics is mathematics, so uttered Galileo a long time ago (although he said that the

language of the universe is mathematics). Well, he was right and we have no idea why that seems to

reliably be the case! So the importance of that realization will become clear as we go, which is partly why I

don’t want to avoid mathematics altogether. But it will be relatively simple. You’ve seen everything I’ll ask

you to do in high school, at the very least. It will be fine. Let me show you.

Wait. I’m not a math person.

Glad you asked. Actually, nobody is. Really mathematics is a habit of mind and strategy

for how you read. Certainly for what we’re going to do. I promise you. Read with your pencil

out. Read every line with a mathematics symbol. You’ll get it.

2.5.1 Some Algebra

Our algebraic experience here will be some simple solutions to simple equations. I’ll need the occasional

square root and the occasional exponent, but no trigonometry or simultaneous equation solving and cer-

tainly no calculus. I’ll refer to vectors, but you’ll not need to do even two-dimensional vector combina-

tions.

Our Algebra will be pretty simple with basically one rule: Whatever you do to the left hand side of an

equation, you must also do to the right side and visa versa. Words to live by.

Let me make my point by going back to the Gravitation law and asking a simple scientific question of

it.
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Wait. Why bother doing this? Use your words!

Glad you asked. There’s an economy in using equations, but also a hidden power. The

form of an equation that describes something that nature does encodes new information

that can be discovered by manipulation...information that would not be obvious in an English

sentence.

Here’s what I mean. I keep coming back to Newton’s Universal Law of Gravitation which I can indeed

describe in a paragraph. Here goes:

“The force of attraction experienced by two masses on one another is directly proportional to the

product of those two masses and inversely proportional to the square of the distances that separate

their centers. The constant of proportionality is called the Gravitational Constant which is 6.67408 £
10°11m3kg°1s°2.”

There. A perfectly good representation of Newton’s Gravitational Law. Lots of writing, so it’s inefficient.

If I gave it a nickname, say Newton’s Law and then used those two words every time I meant to refer to it,

you might have to go back and re-read the paragraph again. . . and again. But what this doesn’t do, besides

allow you to quickly move through a gravity-narrative, is help you to find out new things about nature.

I mentioned that it’s hard to measure G. Why is that? Does the paragraph enunciation of Newton’s Law

help you to estimate the ease or difficulty of making that measurement? I don’t think so. But if we look at

it as a formula, we can interrogate it and answer our question.

F =G
mM

R2

and then use the rules of algebra to ask about G and see what results. Let’s do that:

You Do It 2.1.
/toolkit/SolvingNewton

Suppose we want to measure the Gravitational Constant, G . We expect it to be small...it’s in the range of 10°11. We have
to use the tools available which include a climate and vibration-free lab area that’s about 1 meter long and a dime-store
spring scale that’s incapable of measuring forces less than 0.1 Newtons. Can we make this measurement using any kind
of reasonable masses? Does this experiment make sense?
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You needed to literally touch equations and move the pieces around in order
to gain insight.

Even if it’s a part of the text, you should copy it out while you read. Remember, these parts are marked by

Our appetite for algebraic complexity in QS&BB will be limited. For example, we’ll not encounter

formulas that are much more complicated than these:

y = a £x = ax solve for x to get x = y/a

y = x + z solve for x to get x = y ° z

y = a £x +b = ax +b solve for x to get x = y °b

a

y =
p

a +x solve for x to get x = y2 °a

You can do this, right? That’s about all that you’ll need to remember of algebra. Just remember the rule.

Then...it’s merely a game—a puzzle to solve.

There’s an important reason I have chosen to include some mathematics in QS&BB: I’d hate for you to

miss...dare I say...a spooky feature of the universe. It behaves as if mathematics is an essential part of how

it works.16

16 There has been this eyes-open discussion in physics for a century
now. Is mathematics invented or is it discovered? The former would
suggest that it’s in some sense, man-made. The latter would sug-
gest that it’s a deeply embedded feature of nature. . . to be found out.
In 1960 the famous mathematical physicist Eugene Wigner wrote a
paper that’s still read today called the The Unreasonable Effective-
ness of Mathematics in the Natural Sciences. Ask Mr Google about
it. Almost 30,000 hits, almost all of them “reprints.”

We’ll take it slow with the math, but even a little will add a lot to your understanding. So let’s spend the

rest of this chapter reminding yourself of things that you would have learned in high school.

2.5.2 The Powers That Be

Once in a while, we’ll need to multiply or divide terms that have exponents. There are simple rules for

this, but let’s figure them out by hand...so to speak. The first thing to remember about exponents is that

in a term like xn , a positive integer n tells you how many times you must multiply x by itself. So:

x1 = x.
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Here, there’s just one x, so: x1 = x.

The second thing to remember is that x0 = 1. There aren’t any x 0s in the product and so all that could be

there is 1. Armed with that, let’s kick it up a notch.

Suppose I have

x £x

You’d be pretty comfortable calling that "x-squared"17 and from the above, the number of x 0s there are in 17 From the discussion of Descartes, you can see why the word
“squared” is used since this is a legacy of the early linking of algebra
with geometry. Ditto for “cubed.”

that product is two. So

x £x = x2.

If I add another product, then I’d have x£x£x = x3. Get it? Notice that what we’ve also got in this equation

is:

x £x £x = x2 £x1 = x3

and we’ve just developed our first rule on combining exponents:

xn £xm = xn+m .

Now you try it.

You Do It 2.2. /toolkit/Exponents

What is x2x1x4?

One more time, but different. Another rule:

x°n = 1
xn .

If the same rule for adding exponents works—and it does—then we can multiply factors with powers by

keeping track of the positive and negative signs of the exponents.
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So here’s an easy one, first by multiplying everything out:

x £x £x

x £x
= x

and now by using the powers and the rule:

x £x £x

x £x
= x3

x2 = x3 £x°2 = x3°2 = x.

One more thing. The powers don’t have to be integers.

Perhaps you’ll remember that square roots can be written:

p
x = x0.5 = x1/2

so:
p

9 = 3 = 90.5

or:r
1
9

=
µ

1
9

∂0.5

= 1
p

9
= 1

90.5 = 9°0.5

= 1
3

You Do It 2.3.
/toolkit/ExponentsAgain

What is x°2x1x4?

That’s it. Now we have everything we need to turn numbers into sizes of...stuff.
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2.5.3 Units Conversions

Numbers are just numbers without some label that tells you what they refer to. Now not all numbers have

to refer to something, pure number is a respectable object of mathematical research—prime numbers for

example have been a topic of research for centuries. Irrational numbers–those that can’t be expressed as

a ratio of whole numbers, like º, –are likewise objects with no necessary relationship to..."stuff" in our

world.

We’re concerned with numbers that measure a parameter or count physical things and they come with

some reference ("foot") unit that is a customary way to compare one thing with another.18 Of course not 18 ”Apples and Oranges” is a phrase that refers to units...you need to
keep your fruit straight.everyone agrees on the units that should be used. Wait. There’s the world, that agrees on one set and then

there’s the United States that marches to its own set of units. Thinking of you, feet.

I’ll not use Imperial units (feet, inches, pounds, etc.) very much, except to give you a feeling for some-

thing that you’ve got an instinct for. . . like the average height of a person. We’ll use the metric system, in

particular the MKS units19 in which the fundamental length unit is the meter (about a yard). 19 This stands for meter-kilogram-second, as the basic units of length,
mass, and time. It’s a dated designation as the real internationally
regulated system is now the International System of Units (SI) which
stands for Le Système International d’Unités. The French have al-
ways been at the forefront of this.

Just like an exchange rate in currency, so many euros per dollar, we’ll need to be able to convert, among

many different units. All the time.

Understand conversions! Conversions are a part of life! At least in QS&BB.

Let’s get our bearings. What’s a common sort of size in life? How about the height of an average male.

Mr Google tells me that’s about 5’10”. How many inches tall is our average male? Here’s the thought-

process you’d use to calculate this.

Pencil 2.1.

Three steps:
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1. A single foot is 12 inches.

2. So, 5 feet is 5£12 = 60 inches

3. and the combination is 60+10 = 70 inches.

...which you could do in your head I’ll bet. But this simple, almost intuitive calculation uses a more gen-

eral conversion from one unit to another through the use of a conversion factor. All unit manipulations

use a conversion factor, which is just a number,20 which will be expressed as a ratio or fraction, of the20 . . . a number that’s actually like a fancy way to write “1” since it’s
really relating one thing in a set of units to the same thing in a different
set of units.

conversion of one set of units (“from”) to the new set (“to”). It will appear like this:

where you’re going to =
√

to

from

!

£where you’re coming from

The action is in that bracketed term. It’s arranged so that the “from” in the denominator cancels the units

of the right hand “coming from” term. What’s left in the numerator you intentionally set up to have the

units of what you are going to, here in step 2 above...we’re going from feet to inches. In this case, step 1

defines the bracket and step 2 uses it and in symbols, step 1 says:

√
to

from

!

=
number of inches in a foot

a foot
=

12

1

So armed with this, we can do the conversion of feet to inches.

five feet in inches =
number of inches in a foot

a foot
£5 ft =

12

1
£5 ft

=
12 inches

1 ft
£5 ft =

60

1
inches

= 60 inches.

There’s another way to think about this (which is identical, but just spun differently) which might be use-

ful. You know that you can always multiple any number times 1 and get that back. So in the inches-feet

world, we could write:

1 foot = 12 inches

1 = 12 inches
1 foot
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It’s that “1” that I want to use to convert 5 feet to inches. We’d do that by writing:

5 foot = x inches (looking for x here)

5 foot£1 = x inches (haven’t done anything with “£1”)

5 foot£ 12 inches
1 foot

= x inches (used what “1” is here)

5 foot£ 12 inches
1 foot

= 5£12 inches = 60 inches = x inches

Notice that we treat units like algebraic terms and can cancel them as if they were symbols or numbers:

the “feet" cancel above. That’s the neat thing. If you set up the conversion factor right, the units will

multiply and divide along with numbers so you can always see that you get what you want. While this is a

particularly simple conversion, sometimes we’ll need to do some which are either more complicated, or

use units that maybe you’re not very familiar with. I won’t be so pedantic usually, but hopefully you get

the point!

Let’s do a harder one. If a furlong is 201.2 meters, how furlongs are there in a mile? What we know

— the “1” as in the above discussion is that 1 furlong = 201.2 m. Then we have to think about it since

miles is where we start from, not meters. More conversions. How you do this might depend on what

you remember. For me21 what is stuck in my head is that a mile is 5,280 feet and that a foot is 12 inches 21 ...for some reason

and that an inch is 2.54 centimeters and that a meter is 100 cm. So I always start there. You might do it

differently. So for me, that’s 4 conversions, or four brackets along with my fancy “1” that I would use to do

this conversion. It’s kind of fun. Really.

You Do It 2.4. /toolkit/FurlongMi

How many furlongs in a mile if there are 201.2 meters in a single furlong?
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Did you get that there are 8 furlongs in a mile? If not, click on the little guy and watch me do it. I’ve

collected a number of the useful conversions into graphs which you can use later.

Figure 2.4: The right hand curve shows a constant speed of 4 m/s,
holding steady for 10 s. The left hand curve shows the distance that
an object will travel at that constant speed as a function of time.
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Figure 2.5: The right hand curve shows a constant speed of 4 m/s,
holding steady for 10 s. The left hand curve shows the distance that
an object will travel at that constant speed as a function of time.

2.5.4 The Big 10: “Powers Of,” That Is

One of the more difficult things for us to get our heads around will be the sizes of things, the speeds of

things, and the masses of things that fill the pages of QS&BB. Lots of zeros means lots of mistakes, but

it also means a complete loss of perspective on relative magnitudes. Big and small numbers are really

difficult to process for all of us.

As we think of things that are bigger and bigger and things that are smaller and smaller, where do you

start to loose track and one is the same as another? Keep in mind our average-guy height of about a meter

and half–for this purpose, thing... “about a couple of meters”–and here is a ranked list of big and small

things with approximate sizes:

1. African elephant, 4 m

2. Height of a six story hotel, 30 m

3. Statue of Liberty, 90 m

4. Height of Great Pyramid of Giza, 140 m

5. Eiffel Tower, 300 m

6. Mount Rushmore 1700 m
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7. District of Columbia, 16,000 m square

8. Texas, East to West, 1,244,000 m

9. Pluto, 2,300,000 m diameter

10. Moon, 3,500,000 m diameter

11. Earth, 12,800,000 m diameter

12. Jupiter, 143,000,000 m diameter

13. Distance Earth to Moon, 384,000,000 m

14. Sun, 1,390,000,000 m diameter

15. distance, Sun to Pluto, 5,900,000,000 m

16. Distance to nearest star (Alpha Centuri), 41,300,000,000,000,000,000 m

17. diameter of the Milky Way Galaxy, 950,000,000,000,000,000,000 m

18. Distance to the Andromeda Galaxy, 24,000,000,000,000,000,000,000 m

19. Size of the Pisces–Cetus Supercluster Complex, our supercluster, 9,000,000,000,000,000,000,000,000 m

20. Distance to UDFj-39546284, the furthest object observed, 120,000,000,000,000,000,000,000,000 m

Do I need to go any further? Given what I know from my life, I have a pretty good idea of how big #1-8 are.

Beyond that, I have no idea how much bigger the Milky Way Galaxy is than the size of Jupiter. It all blends

together.

But there’s a way: exponential notation. . . using our power rules and the number 10. It’s easy.

A number expressed in exponential notation as:

a number£10power

Let’s think about this in two parts. First, the 10-power part.

The rules above work for 10 just like any number, so 10n is shorthand for the number that you get when

you multiply 10 by itself n times. This has benefits because of the features of 10-multiples, that we count

in base-10, and how you can just count zeros. So for example:

103 = 10£10£10 = 1,000.

The power counts the zeros, or more specifically, the position to the right of the decimal point from 1. So

if you have any number, you can multiply it by the 10-power part and have a compact way of representing

big and small numbers. So, following through:

3£103 = 3£10£10£10 = 3£1000 = 3000.
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We can do the same thing with numbers less than 1, by using negative exponents for the 10-power part.

0.03 =
3

100
=

3

102 = 3£10°2.

So you just move the decimal place the power-number to the right to go from 3£10°2 to 0.03.

The second thing is the number in front that multiplies the power of 10. It’s called the “mantissa” and

that’s all it is. . . a number.

Now that confusing list above can be written in a way that’s more likely to allow your brain to compare

one with the other, since now you’ll immediately see that one thing is 10 or 1000 or so-on times another.

January 9, 2017 15:14



52 QUARKS, SPACETIME, AND THE BIG BANG

1. African elephant, 4 m

2. Height of a six story hotel, 30 m, 3.0£102 m

3. Statue of Liberty, 90 m, 9.0£102 m

4. Height of Great Pyramid of Giza, 140 m, 1.4£102 m

5. Eiffel Tower, 300 m, 3.0£102 m

6. Mount Rushmore 1700 m, 1.7£103 m

7. District of Columbia, 16,000 m square, 16.0£103 m, or 1.6£104 m

8. Texas, East to West, 1,244,000 m, 1.244£106 m

9. Pluto, 2,300,000 m diameter, 2.3£106 m

10. Moon, 3,500,000 m diameter, 3.5£106 m

11. Earth, 12,800,000 m diameter, 12.8£106 m, or 1.28£107 m

12. Jupiter, 143,000,000 m diameter, 143.0£106 m, or 1.43£108 m

13. Distance Earth to Moon, 384,000,000 m, 384.0£106 m, or 3.84£108 m

14. Sun, 1,390,000,000 m diameter, 1.39£109 m

15. Distance, Sun to Pluto, 5,900,000,000 m, 5.9£109 m

16. Distance to nearest star (Alpha Centuri), 41,300,000,000,000,000,000 m, 41.3£1018 m, or 4.13£1019 m

17. diameter of the Milky Way Galaxy, 950,000,000,000,000,000,000 m, 950£1018 m, or 9.5£1019 m

18. Distance to the Andromeda Galaxy, 24,000,000,000,000,000,000,000 m, 24.0£1021 m, or 2.4£1022 m

19. Size of the Pisces–Cetus Supercluster Complex, our supercluster, 9,000,000,000,000,000,000,000,000 m,

9.0£1024 m

20. Distance to UDFj-39546284, the furthest object observed, 120,000,000,000,000,000,000,000,000 m, 120£
1024 m or 1.2£1026 m

So now you can compare and see that the distance from the Earth to the Moon is only a little more

than three times the diameter of Jupiter. Now your “mind’s eye” springs into action since you can sort of

imagine three Jupiters between us and the Moon. With all of those zeros, I couldn’t do that!

Powers of 10 have nicknames...Is “a google” really a power of ten?22 Here’s an official table of the names,22 No. The word is Googol and it’s 10100. The rumor is that the
Google founders misspelled it when they incorporated. size, and abbreviation for most of them:

Let’s work out an example. Something you can use at a party. I first worked this out for a class when

I was in Geneva, Switzerland working at CERN. It was July 4, 2010, which was just another Sunday over

there. The United States came into existence on July 4, 177623 which was 2010°1776 = 234 years ago.23 Actually, the Declaration of Independence wasn’t fully signed until
August 2, 1776—my birthday! The day, not the year. So how many seconds had the United States been around if we start from midnight on July 4, 1776?

Pencil 2.2.
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234 year per U.S. = 2.34£102 years
U.S.

86,400 seconds per year = 8.64£104 seconds
year

So:

seconds per U.S. = 2.34£102 year
U.S.

§8.64£104 seconds
year

= (2.34)§ (8.64)£102§104 = (2.34)§ (8.64)£106

seconds per U.S. = 20.218£106

seconds per U.S. = 2.0218£107

Wait. You mean I treat the words of units as if they were algebraic variables?

Glad you asked. Yes. You can do that and even catch mistakes when the products and

cancellations don’t lead to what you expect. Had I gotten miles times hours, I’d know my

actual formula was wrong even before doing it. No charge for this hint. Use it wisely.

There are a few of things to notice here. First, that’s a lot of seconds! Second (get it?), to multi-

ply two numbers together, you separate the mantissas, and multiply them, and the exponents, and add

them...separately.24 Please understand these operations by doing them over by hand. The obvious thing 24 Remember? The “mantissa" in X £10y is X and the exponent is
the y .happens when there are negative exponents involved. For example, convince yourself that 15% of the

lifetime of the U.S. is 3,032,700 seconds, and do it by treating 15% as

15% = 0.15 = 1.5£10°1.

Finally, notice that I canceled the units of “year." You can always do that with units—set them up right,

keep them in your equations, and you can quickly find mistakes. Here, the units on the right have to give

you the units on the left, which we wanted: "seconds/U.S."

2.5.5 Graphs and Geometry

One of the amazing mathematical discoveries of the 17th century was that geometry could be tied to

algebra through the use of the growing notion of a function. This is almost entirely due to Rene Descartes

and Leonhard Euler (1707-1783)25

25 Euler was one of the most amazing mathematicians in history. He
did so much that his work is still being analyzed and cataloged today.
To him we owe the notion of a function. But he also worked in physical
problems like hydrodynamics, optics, astronomy, and even musical
theory. While Swiss, Euler lived and worked most of his life in St.
Petersburg, Russia.
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We will deal with some functions that would be very hard to evaluate on your calculator. But Descartes’

gift is that I can show you the graph and evaluation can be done by eye, which is in effect solving the

equation. We’ll use some simple geometrical relations which I’ll summarize here.

Table 2.1: More powers of ten than you ever wanted to know. Except
that many of them we need to know.

septillionth yocto- y 0.000000000000000000000001 10°24

sextillionth zepto- z 0.000000000000000000001 10°21

quintillionth atto- a 0.000000000000000001 10°18

quadrillionth femto- f 0.000000000000001 10°15

trillionth pico- p 0.000000000001 10°12

billionth nano- n 0.000000001 10°9

millionth micro- µ 0.000001 10°6

thousandth milli- m 0.001 10°3

hundredth centi- c 0.01 10°2

tenth deci- d 0.1 10°1

one 1 100

ten deca- da 10 101

hundred hecto- h 100 102

thousand kilo- k 1,000 103

million mega- M 1,000,000 106

billion giga- G 1,000,000,000 109

trillion tera- T 1,000,000,000,000 1012

quadrillion peta- P 1,000,000,000,000,000 1015

quintillion exa- E 1,000,000,000,000,000,000 1018

sextillion zetta- Z 1,000,000,000,000,000,000,000 1021

septillion yotta- Y 1,000,000,000,000,000,000,000,000 1024

Formulas From Your Past

I know that you’ve seen most of this somewhere in your past! So return with us now to those thrilling days

of yesteryear.26

26 Google it!

Equation of a Straight Line

A straight line with a slope of m and a y intercept of b is described by the equation:

y = mx +b. (2.1)
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Figure 2.6 shows such a straight line.

Figure 2.6: straight

Equation of a Circle

A circle of radius R in the x ° y plane centered at a (a,b) is described by the equation:

R2 = (x °a)2 + (y °b)2. (2.2)

Of course if the circle is centered at the origin, then it looks more familiar as

R2 = x2 + y2. (2.3)

is described by the formula Figure 2.7 shows such a circle.

Figure 2.7: circle

Equation of a Parabola

A parabola in the x ° y plane with vertex at (a,b)

y =C (x °a)2 +b (2.4)

where C is a constant. Figure 2.8 shows a parabola.

Figure 2.8: parabola

Area of a Rectangle

A rectangle with sides a and b has an area, A of

A = ab (2.5)

Area of a Right Triangle

A right triangle (which means that one of the angles is 90 degrees) with base of a and height of b has an

area, A of

A = 1/2ab. (2.6)

For a right triangle, the base and height are equal to the two legs. But the formula works for any triangle.

Figure 2.9 shows how that works.
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Figure 2.9: triangles

Area and Circumference of a Circle

For a circle of radius R, the area,A is

A =ºR2 (2.7)

and the circumference, C is

C = 2ºR. (2.8)

Figure 2.10: You realize that two pizzas is a “circumference”? Be-
cause...wait for it...it’s “2 pie are.” You’re welcome. (papajohns)

Pythagoras’ Theorem

For a right triangle, the hypotenuse, h is related to the lengths of the two sides a and b by the Theorem of

Pythagoras:

h2 = a2 +b2. (2.9)

2.6 Shapes of the Universe

One of the remarkable consequences of the mathematization of physics that began with Descartes is that

we’ve come to expect that our descriptions of the universe will be in the language of mathematical func-
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tions. Do you remember what a function is? The fancy definition of a function can be pretty involved, but

you do know about function machines and I’ll remind you how.

Figure 2.11: Left: the venerable HP-25 programable (!) scientific
calculator. Right: a slide rule used for all calculations until the early
1970’s. It was not programmable (although it was wireless).

When I was a senior in college, finishing my electrical engineering degree, our department had a visitor

from the Hewlett Packard Company. It was either Bill Hewlett or Dave Packard, I can’t remember which.

But they promised to do away with the slide rule that we all carried around with us everywhere and showed

us a brand new product: a portable scientific calculator, that they called the electronic slide rule. This was

1972 and he showed us the first HP calculator, the HP-35. Needless to say, I couldn’t afford it—it cost

$400— but later in graduate school I bought my first scientific calculator, the HP-25, pictured in Fig. 2.11

along with the slide rule that I carried for four years. Today I’ve got more processing power in my watch

then I had in that calculator. But I’ll bet you’ve got something like it...calculators are nothing but electronic

function machines. So in the spirit of Fig. 3, Fig. 2.12 shows the circuit board from the inside of the HP-25

with it’s simple processor at the bottom.

Figure 2.12: The AMI 1820-1523 Arithmetic, Control Timing proces-
sor: the heart of a function machine. Adapted for my silly purposes,
but I’ll bet you won’t forget it! The tabs at the blue arrows are actually
connected the processor to the keyboard. That’s how data get in.

%

2.6.1 Functions: Mathematical Machines

Figure 2.12 shows what a function does: if you enter data through the keypad—a value of x—and hit

the appropriate button, the display shows the value of the function. So if the function was the formula

f (x) = x2 and if I keyed in “4” and pushed the x2 button, the display would read “16,” the value of f (2) for
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that particular function. Notice that it doesn’t give you more than one result, and that’s a requirement of

a function: one result.

Figure 2.13: blackbodyvarious

So that’s all a function is: a little mathematical machine that reports a single result for one or more

inputs according to a rule. For us, functions can be represented by a formula, an algorithm, a table, or a

graph. In all cases, it’s one or more variables x or x & y ... or x &y &z... in, a rule about what happens to

them, and one numerical result out.Your algebra teacher would have called the inputs (e.g., x, y , ...) the
independent variables, which would have been members of the func-
tion’s “Domain,” and the output (e.g., f (x, y , ...) or often y) the depen-
dent variable, which would have been inside the “Range.”

Nature seems to live by functions27 and since in QS&BB we’re all about Nature, we’ll need to use func-

27 Why? We don’t know.

tions. We’ll solve actual formulas when they’re simple functions and analyze plots of functions when

they’re complicated. For example, Fig. 2.13 is a function of two variables, a wavelength, ∏ and tempera-

ture (the units don’t matter here). It’s a messy formula which we’ll admire, but not derive in Chapter ??. But

boy is it an important function. Here the little function machine calculates the value of the energy density

of the radiation emitted by an object heated to a particular temperature. If you provide a wavelength and

a temperature (in the figure, 3,000, 4,000, 5,000, or 6,000 degrees) to the function, then it reports back to

you the value of the energy density that the body radiates. You can evaluate that function:

January 9, 2017 15:14



E V E RYO N E N E E D S TO O L S 59

You Do It 2.5. /toolkit/GraphRead

What is the ratio of the value of the energy densities for one object at 4,000 degrees and another at 5,000 degrees at a
wavelength of 1£10°6 meters?

There. You just evaluated a complicated function...twice.

Figure 2.14: The quadratic function f (x) = 2x2°4x+1.5. plotted with
blue circles at the points where f (x) = 0, the roots.

2.6.2 Polynomials

Many of Nature’s functions are in the form of polynomial equations, which are reminiscent of the quadratic

equation:

f (x) = ax2 +bx + c. (2.10)
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You may have “solved” this equation in a number of ways in your algebra classes. What solving means

is finding the x’s for which the value of the function is zero. There’s also a geometrical interpretation of

“solving” a polynomial and an algebraic rule for doing it. Notice that the quadratic has the form of the

equation of a parabola, so let’s look at an example:

f (x) = 2x2 °4x +1.5. (2.11)

Remember that we can plot functions and Fig. 2.14 is a graphical representation of this function. When

you solved a quadratic, you actually found the values of x for which the value of the function value—these

are the “roots” of the function—of which there are two which I’ve called x1 and x2. So if we plug either

into Eq. 2.10, then we will get f = 0..28

28 Remember that the degree of a polynomial corresponds to the
number of roots. For a quadratic, the degree is 2. For a cubic, it’s 3
and so on.

For quadratic equations, there is also a single formula to calculate the roots directly.29 If we take29 For cubics, there is a procedure. For polynomials of higher degree,
it’s complicated! Eq. 2.10 as the general form, then the “quadratic formula” you might remember from a former mathe-

matics life is

x1,2 =
°b ±

p
b2 °4ac

2a
. (2.12)

Of these two solutions: x1 is for the + sign and x2 is for the ° sign.30 So for our example in Eq. 2.11,30 Or the other way around—your choice.

a = 2,b =°4, and c = 1.5.
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You Do It 2.6. toolkit/Quad

For the example quadratic, use the quadratic formula, Eq. 2.12 to find the two roots of the function, Eq. 2.11. Do they
match the “solution” you would get by looking at Fig. 2.14?

A polynomial can be of any “degree,” which is the highest power of x. Since the middle of the 16th cen-

tury (Copernicus’ time) mathematicians had figured out how to expand any such function for an arbitrary

degree, like (a +x)n , where n is a positive integer. This formula would save work since expanding (a +x)n

if n was anything bigger than about 3 is a lot of calculating. Let’s expand a quadratic polynomial, that is

for n = 2:

(a +x)2 = (a +x)(a +x) = a2 +ax +xa +x2 = x2 +2ax +a2 (2.13)

This old magic expansion formula is called the Binomial Expansion for polynomial of degree n—it has

n +1 terms:

(a +x)n = an +nan°1x + n(n °1)
2!

an°2x2 + n(n °1)(n °2)
3!

an°3x3...+xn (2.14)

Until our hero, Isaac Newton came along, n was always a positive integer in this context.31

31 Remember that the n! notation stands for “n factorial.” Which is
n! = n(n °1)(n °2)(n °3)...1

Approximating Functions

Newton began inventing mathematics in the 17th Century and found a way to expand a formula for cases

in which n could be anything: a positive integer, a negative integer, or even a fraction.32 The result was

32 This was an essential step in the invention of the calculus. . . and
the thing that Leibniz learned from Newton and used himself to invent
a competing version of calculus. We’ll touch on this in Chapter ??.

an expansion that has an infinite number of terms! In contrast to how that sounds, it’s actually very useful

for many physics applications as we’ll see.

Let’s take a particular case in which a = 1 and write it out Newton’s idea in the same spirit as Eq. 2.14.

(1+x)n = 1+nx + n(n °1)
2!

x2 + n(n °1)(n °2)
3!

x3... (2.15)

Here’s where it will be interesting for physics. Look carefully at Eq. 2.15: each term is proportional to an

increasing power of x, x2, x3, x4 and so on. In physics, we can use this to make accurate approximations.33 33 While this sounds like just a work-saver, we’ll see that it actually al-
lows us to sometimes gain insight of some tricky physics. Be patient.Suppose that x < 1. Then each term gets smaller and smaller since x3 < x2 and so on if x < 1...so each

January 9, 2017 15:14



62 QUARKS, SPACETIME, AND THE BIG BANG

additional term adds less and less to the sum before it. Now we’ve got a little approximation-tool because

many formulas that matter in physics look like

something
(1+ something tiny) some power

or can be rearranged to look like that.

Figure 2.15: Our example function, f (x) = 1
1+x .

Here’s one that we’ll use. Let’s imagine the function

f (x) = (1+x)°1 = 1
1+x

.

Let’s even plot it, which I’ve done in Fig. 2.15. Notice that this function becomes infinite when x =°1 and

that it quickly falls until x = 0 and then slowly heads off towards zero as x becomes very large. That makes

sense, right?

Now lets expand that function according to the approximation in Eq. 2.15. For this particular function,

n =°1 and we will keep just the first four terms of the otherwise infinite number of terms:

Figure 2.16: See the text for an explanation. The right plot is a blow-
up of the left around the gray box.
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f (x) = 1
1+x

º 1°x +x2 °x3 (2.16)

(By the way, the º symbol in Eq. 2.16 stands for “almost equal to.”) The right hand side of this equation is

really the sum of four different, simple functions. When added together, we’ll see that they get closer and

closer to the original, depending on how many terms are included. Look at Fig. 2.16. The red curve in the

left and right plots is our original function and the colored curves are each getting closer and closer to it.

The blue “curve” is the trivial function that’s the first term in Eq. 2.16: f = 1. The orange curve takes the

second term in Eq. 2.16 and adds it to the first, so it’s f (x) = 1°x. The green curve adds the third term, x2

to the orange curve and so on. The right plot is a blowup of the region in the gray box on the left. Notice

that in the region of x which is very small, the few functions are a pretty good approximation to the red.

The more terms we might add the further out in x that agreement would continue.

Remember this! It will become important later when we’ll encounter functions and approximate them

with a few terms of the expansion from Eq. 2.15. Here are the functions that we’ll see in the pages ahead:

p
1+x = 1+ 1

2 x ° 1
8 x2 + 1

16 x3 ° ... (2.17)

1
p

1°x
= 1° 1

2 x + 3
8 x2 ° 5

16 x3 + ... (2.18)

1
1°x

= 1+x +x2 +x3 + ... (2.19)

1
(1+x)2 = 1°2x +3x2 °4x3 + ... (2.20)

2.7 Euler’s Number

You all know that º is an unusual number. It’s simply the ratio of the circumference of a circle to its

diameter (see Eq. 2.7) and, the Indiana Legislature34 not withstanding, it’s a number that has a decimal

34 Yes, that story is true. In 1897 state legislature representative,
Dr. Edward J. Goodwin, a physician who dabbled in mathematics,
proposed changing the value of º to 3.2. The bill sailed through
the House but was postponed indefinitely in the Senate. It seems
that Professor C.A. Waldo at Purdue was horrified enough that he
intervened and the bill died.

representation that never ends. It’s “irrational” and has the (approximate!) value:

º= 3.1415926536... forever! (2.21)

There is another irrational number that plays a big role in mathematics, but also in many other areas of

“regular” life. It’s called “Euler’s Constant” although the prolific mathematician Euler didn’t first discover

it, he discovered many of its unique features and so his name is associated with it. We physicists tend to

just call it “e” since that’s the symbol that is used to represent it. It has the value:

e = 2.71828182845904523536... forever! (2.22)
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Euler first used e to understand compound interest. If you invest $1 at a compounded interest of 100% per

year, then at the end of the year your wealth would have been increased by a factor of e. While not many

savings plans grant 100% interest, you get the point. It figures into the calculation of any interest rate. I’m

going to try to convince you that it appears in many guises.

The importance of e in science comes from the fact that the rate at which e increases or decreases is

proportional to itself. So if something increases by eax then the rate at which it increases is aeax . This

leads directly (with some calculus) to the rule for how radioactive nuclei, atomic systems, or elementary

particles decay. Suppose we start out with N0 radioactive nuclei with a “lifetime” called ø at a time t = 0,

then the number of left after a time t is equal to

N = N0e°t/ø. (2.23)

So the fraction left is N
N0

= e°t/ø. Figure 2.17 shows two curves for both the exponential decay and

Figure 2.17: exponentials
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exponential growth formulas.

But it’s not only some sort of modern physics thing. Atmospheric pressure decreases the higher up

you go...this is because there’s less air above you. So home runs in Denver’s Coors Field go further than in

Chicago’s Wrigley field since Denver is about a mile higher than Chicago. We could pretty closely calculate

the density at any altitude using this same formula, but modified for the physical situation. Let’s call the

density of air at any height above sea-level (y) to be Ω(y). Then if we let Ω(0) ¥ Ω0 then the function that

describes the density at any height turns out to be

Ω(y) = Ω0e°y/8000. (2.24)

where the distance above sea level, y is measured in meters. Let’s do one more thing and then we can use

our curves, even though the axes are just relative numbers. So we could directly ask the fractional change

in density:
Ω(y)
Ω0

= e°y/8000 (2.25)

Relative to sea level, then a mile high (1,609 m) makes the right side e°(1609/8000) = e°0.2 so we can use the

general graph in Fig. 2.17 since we’ve determined that y = 0.2,35 At that value, read across, we see that the 35 Of course, we’re using y in the formula for height, which is often a
convention, but it’s still playing the role of the x in the general graph.density is reduced to about 80% of what it would be at x = 0. So,

Ω(y)
Ω0

= 0.8. (2.26)

Not everything in nature decays! Suppose you’re a biologist studying bacterial growth. If a particular

strain grows continuously at a rate of 5% per day, you could predict the size of the colony after some

number of days.36 The growth in the colony where t is measured in days is given by 36 Or, you could measure the increase and write the function that
describes it.

F (bacteria) = F0eRt = F0e0.05t (2.27)

where F (bacteria) is the number of bacteria after a time t and F0 is the number that you started with. For

a different bacterium, R would be a different number (a “rate”). If we waited patiently for about a month,

say t = 30 days, we’d have

F (bacteria in a month/F0 = eRt = e(0.05£30) = e1.5 (2.28)

Back to Fig. 2.17 with x = 1.5 the top graph reads about 4.4. So if we started with a population of 100, after

30 days it would have grown to 4.4£100 = 440.

This is what people mean when they refer to “exponential growth”—a very rapid increase in some phe-

nomenon.
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2.8 Vectors

We’re about to talk about motion, but let’s make an important point here that will be obvious. When you’re

driving on the highway and your (American) speedometer reads "60 mph," it’s telling you the speed not

your direction. Going 80 mph north is as much over the speed limit as going 80 mph east since speed is all

the highway patrol radar cares about. (There isn’t one speed limit for easterly travel and another for when

the road bends north.)

The cops might not care, but you care a lot whether you’re traveling north at 60 mph or east, since in

order to get where you’re going on schedule–your trip depends not only on how fast you go, but in what

direction. The difference between speed and velocity is critical. Not all quantities are vectors...for example,

what’s the direction of a temperature? But, velocity, space coordinates, force, momentum, electric and

magnetic fields, and many other physical quantities have directions as well as values.

A vector has both a magnitude and a direction Key Concept 3

There’s an algebraic way to represent vectors, but we’ll not need that. Instead we’ll make use of the

handy symbol of an arrow: !. The length of the arrow represents the magnitude and of course the ori-

entation and the head of the arrow represent the direction. Arrows can be °!, or short !, pointed in

different directions, -, √, %, etc. Very handy. The magnitude can mean many things, depending on the

physical quantity being represented. Obviously, the simplest would be a distance in space, like an arrow

on a map or a whiteboard during time-out. That’s it.

Here’s a way to think about them. Suppose you’re in a strange city and you want to know how to get

from your hotel to a particular restaurant. You go to the front desk and you’re told that you need to walk

for 7 blocks, Terrific. Now what? Seven blocks that way? Or, seven blocks the other way! Rather, "walk

4 blocks, east and then 3 blocks north" is more helpful, as you can see in Fig.~\ref{blocks}. (It’s just like

velocity.)

Figure 2.18: The layout showing my hotel (H), the restaurant (R)
where there is fried chicken waiting, and the city block structure.

Now we can go around writing "four blocks east" (or "60 mph north") everywhere, but we need a better

notation that packs both directional and magnitude information into a single symbol so that our hotel-

restaurant stroll east is succinctly distinguished from one to the west (and so we don’t need to use words

in our equations). Traditionally, in print, a vector is represented as a bold letter.3737 There are at least three ways that I can think of to represent vec-
tors. In print, the bold face x is most common. On a blackboard,
usually people will draw an arrow over the top, ~x. And, finally, some
people put an underline when they write, x.

Notation in equations is fine, but pictures of vectors are going to be most useful for us. It’s easiest to

think in terms of distance vectors. Just like "speed" and "velocity" are related, we can think of "distance"

and "displacement" as analogs. So, our hotel tells us that the restaurant is a distance of 7 blocks away
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and that its displacement is "4 blocks, east and 3 blocks north" and we draw a picture to describe that

instruction. Figure 2.18 shows two vectors that do that:

2.8.1 Vector Diagrams

Drawing arrows on a diagram represent a vector with its orientation representing the direction and its

length representing the magnitude. Sometimes the length of the arrows are actual length dimensions

(like meters, feet, and so on), since a displacement in regular-space is a vector. So, just like a scale on a

map, a displacement can be represented as an arrow which is 3 inches long, but where each inch actually

corresponds to 1 block (or feet, or miles, or furlongs). But, sometimes a vector doesn’t represent a length

in space, but some other physical quantity, like a force or a velocity. Now, this can be complicated since

you’re drawing an arrow that has a length, but you mean it to be something else, like a force. But, it still

works geometrically (the arrow still points in space) and we just use a different scale: we might draw an

arrow aimed at a box on a diagram that’s 2 inches long where every inch corresponds to 2 pounds. So even

though it’s drawn on a diagram of an object, it represents the application of a force of 4 pounds applied

at the point where the arrow is drawn. That’s just a visual convenience since the length of the vector

in pounds wouldn’t have anything to do with any of the length scales in the picture that are lengths or

heights.

For a couple of definitions, refer to Fig. 2.19. There are two basic ways to represent vectors, one for

print and the other for blackboards (or pencils). The print version is to render the vector quantity as a

bold letter. So in Fig. 2.19 the vector on the top is in print A and on paper we would write ~A.

Two vectors, A and B are said to be equal if they are both the same length and point in the same di-

rection. So, as shown A = B, but neither is equal to D even though the length of D is the same as that of

A. Also, we say that A = °C if the vectors have the same length, but are pointing in exactly the opposite

directions. This is shown in Fig.~2.19b. Another standard definition is to represent the magnitude of a

vector–its length–using the symbol |A|. This quantity is a number, not a vector and so we would say that

|A| = |D|.

Figure 2.19: Vectors A and B are equal, and each is equal to °C and
none are equal to D, even though the lengths are all same.

2.8.2 Combining Vectors

If you help me to push on my car, we’re each applying a force. The whole reason for the two of us is not so

we can bond in a shared accomplishment. That’s not a guy thing. No, the reason we do it is that we each

supply a force and the car then gets pushed with more force than either of us could supply by ourselves.
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That is, our forces add...and maybe we bond a little. So, vectors can be added both in symbols, and with

pictures.

We can add vectors together by manipulating the arrows. If in our little moment together, I’m A and

you’re B then, the car gets pushed by our combined force as shown in Fig. 2.20(a). However, the car would

not know the difference between being pushed by the two of us and by some brute who pushes with the

force of our combined effort, which we’ll call C.

C = A+B. (2.29)

Pencil 2.3.

To calculate this using pictures, you can place the tail of B to the head of A and then the displacement

from the tail of A to the head of B is the sum, C. This is shown in Fig. 2.20(b), and the replacement of the

two forces is shown as Fig. 2.20(c). It’s important to realize that the situation (a) and (c) are identical, but

you would not put both$ C$ and the two A and B on the same picture. It’s one or the other.38

38 Dare I carry my little story this far? It’s as if I push on the car, and
you push on me. If my arms hold up, we still push on the car with the
combined force. But, I’d rather not do it that way, thanks.

Notice, that for doing sums, we can translate vectors around our “space" if we don’t change their ori-

entation or length. I did that in the figure.

The car example was all in one dimension, but of course vectors are useful in 2, 3 or more dimensions.

Let’s go back to our trip to the restaurant from our hotel. What I didn’t know, was that there was an open

park just behind my hotel, and I could have cut across it to get to the restaurant. That is, an equivalent

displacement would have been to follow C as shown in Fig. 2.18. That’s all the adding of vectors says: a

single vector that’s equivalent to the operations of the first two. So my trip has two different paths (well,

an infinite number):

C = E+N

Figure 2.20: (a) Both of us pushing on a car; (b) the combination of
our two force vectors; and (c) the replacement of our two independent
forces with the combined force. The car doesn’t know the difference
between (a) and (c)!

Notice that the two vectors don’t point in the same direction, so it would be wrong to calculate the

distance that D represents by just adding the lengths of E and N. That is, the magnitude of D, |D| 6= 4+3.

We have to keep the directions and the lengths pointing in their directions separate.

One more way to look at this trip–which resulted in a nice dinner, by the way–would be if we returned

to the hotel across that field, then our trip would look like Fig. 2.21.
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Notice, that it’s different from Fig. 2.18 in that D points in the opposite direction from C. It’s a "round

trip" and so the total displacement in a round trip is: zero. In algebra, what this says is:

A+B+D = 0

Any time you can rearrange a set of vectors to give a "round trip,” you describe a situation in which there

is no net displacement (we went from the hotel, back to the hotel), or if they are forces, no net force, or

if they are velocities, no net velocity. It’s a balance A+B is balanced by its opposite, D. The other way

to think of this is remembering that we could have gone to the restaurant across the field if we’d known

about it. Notice, that then the vector describing that trip would be °D. We replace A+B with °D. And,

the balance is just the obvious: °D+D = 0. This balancing of vectors will be an important concept to us

as we’ll see in Chapter ??.

Figure 2.21: The same situation as before, but with the hotel-
restaurant trip shown and the restaurant-hotel return shown on the
same picture.

Finally, we can also subtract vectors graphically which is easiest to think about if we think about this

almost silly statement:

a °b = d

a + (°b) = d

This says that the adding the negative of b to a is the same as subtracting it from a. With vectors, this is a

little more meaningful. Referring to Fig. 2.21, let’s create a vector subtraction.

C = E+N

D = °C

°D = E+N = C

So, we change a subtraction of vectors into an addition of vectors by just turning the appropriate one

around.

In order to make the negative of a vector, turn it around and reverse its direction. Key Concept 4
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2.9 What To Take Away

““...it is impossible to explain honestly the beauties of the laws of nature in a way that

people can feel, without their having some deep understanding of mathematics. I am

sorry, but this seems to be the case.

“You might say, ‘All right, then if there is no explanation of the law, at least tell me

what the law is. Why not tell me in words instead of in symbols? Mathematics is just

a language, and I want to be able to translate the language.’ ... I could convert all the

symbols into words. In other words I could be kind to the laymen as they all sit hope-

fully waiting for me to explain something. Different people get different reputations

for their skill at explaining to the layman in layman’s language these difficult and ab-

struse subjects. The layman searches for book after book in the hope that he will avoid

the complexities which ultimately set in, even with the best expositor of this type. He

finds as he reads a generally increasing confusion, one complicated statement after an-

other, one difficult-to-understand thing after another, all apparently disconnected from

one another. It becomes obscure, and he hopes that maybe in some other book there

is some explanation...The author almost made it—maybe another fellow will make it

right.

“But I do not think it is possible, because mathematics is not just another language.

Mathematics is a language plus reasoning; it is like a language plus logic. Mathematics

is a tool for reasoning.”

Feynman, R.P. (1965) The Character of Physical Law BBC. Reprinted by Penguin Books,

1992 ”
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