hi

Day 13, 20.02.2017

reprise Maxwell's Equations — the high points

Particle Accelerators

housekeeping

Lectures forever now: Gotta come to class

Anyone have trouble with the videos inside Lesson 13?

I think MasteringAstronomy is screwed up. I'll fix it

question about anything? I'll make a movie for you:

Midterm...before Spring Break

see the blog post

February 2018

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
28		adda y	adda ya	rdda	2	3
4	5	adda y	adda ya	ndda	9	HW5
11	12	today	lesson 12	15	HW5 due	HW6
18	19	20	21	. 22	23	24
		lecture		lecture	HW6 due	HW7
25 W	idterm-		28		2	HW8
		lecture		lecture	HW7 due	

Eastern Time Time Zone

fields

single electric charge

two opposite charges

parallel plates oppositely charged

bar magnet

single current

current loop

solenoid

toroid

Faraday's Law

A changing B field creates a current in a loop of wire

a current...

what makes electrons move in a wire?

an E field created by the battery

Faraday's Law

Remember...the changing magnetic field created a current

What's really going on?*

a changing magnetic field

must create an changing electric field

the electrons in the wire feel the force of the electric field

and they move: a current

You might want to remember this:

a changing B field creates an E field

the famous, fabulous, four Maxwell's Equations

a schematic view of the mathematics

"Field equations" are like this:

(fancy calculus stuff) x (the **Field**) = (numbers) x (a "source")

the "field equation" for electrical charges:

"Maxwell's Equations" in pictures?

stuff $\times \overrightarrow{E}$ = rate of change of \overrightarrow{B}

a changing B field creates an E field

stuff $\times \overrightarrow{B} = 0$

stuff
$$\times \overrightarrow{B} =$$

+I

You might want to remember this:

a changing B field creates an E field

a changing E field creates a B field

remember my silly turning-the-crank image?

Lesson 3.1

Maxwells aha! moment

stuff
$$\times \overrightarrow{E} = 0$$

stuff
$$\times \overrightarrow{B} = 0$$

stuff
$$\times \overrightarrow{B}$$
 = rate of change of \overrightarrow{E}

stuff
$$\times \overrightarrow{E}$$
 = rate of change of \overrightarrow{B}

differential equations

 $\begin{array}{l} \mathrm{stuff} \ \times \overrightarrow{E} = 0 \\ \\ \mathrm{stuff} \ \times \overrightarrow{B} = 0 \\ \\ \mathrm{stuff} \ \times \overrightarrow{B} = \mathrm{rate} \ \mathrm{of} \ \mathrm{change} \ \mathrm{of} \ \overrightarrow{E} \\ \\ \mathrm{stuff} \ \times \overrightarrow{E} = \mathrm{rate} \ \mathrm{of} \ \mathrm{change} \ \mathrm{of} \ \overrightarrow{B} \end{array}$

remove the explicit sources, Q&I

Look how the equations are symmetric: $E \leftrightarrow B$

$$rac{E}{B} = rac{3 imes 10^8 ext{ m/s}}{c! ext{ the speed of light!}}$$
 Which Maxwell knew.

from his 4 equations

came coupled waves moving in time at the

speed of light

a changing E field creates:

a changing E field, which in turn creates:

a changing B field, which in turn creates:

light, electricity, magnetism

are all the same thing

move a charge at a constant speed

now accelerate the charge

The kinks are the radiation of electromagnetic waves...

accelerated charges create electromagnetic radiation

E applies a force on any Q

E field for example:

You might want to remember this:

a changing B field creates an E field

a changing E field creates a B field

accelerated charges produce electromagnetic radiation

think radio

et cetera...

the good things in life

accelerating charges:

gave Ernie Harwell, Jack Brickhouse, Red Barber, Vin Scully, Mel Allen, Jesse Goldberg-Strassler, and Harry Caray each a job

now think "particles"

Maxwell concerned himself with macroscopic, charged objects

nobody believed in atoms, much less electrons

Our nearly-modern view is due to Hendrik Antoon Lorentz

Hendrik Antoon Lorentz 1853 – 1928

Electric Fields and particles

paradigm example of forces on particles: parallel plates: F=EQ

magnetic forces and particles

wire B

From a particle viewpoint

going to figure out force on a charged particle in the presence of a **B**

remember the field is the thing

Use the parallel currents...and remove the wire in B

step 1

remove wire B replace with its field

But, Wire A moves towards Wire B

step 2

remove wire A

replace with moving **positive** charged particles

so in the direction of the current

this is how magnetic fields deal with particles

they **bend** their paths.

perpendicular to the field

perpendicular to the particle's velocity

right hand, again

a different right hand operation tells you the force direction

this right hand is an operation:

- 1. take fingers and flow through the **v**
- 2. continue on and flow through the **B**
- 3. for +Q your thumb points in the direction of the **F**

Called the "cross product"

$$\overrightarrow{F} = Q\overrightarrow{v} \times \overrightarrow{B}$$

just care about the direction

multiplying vectors: "cross product"

mathematics:

Ov:

physics:

- 1. take fingers and flow through the ${\bf v}$
- 2. continue on and flow through the **B**
- 3. for +Q your thumb points in the direction of the **F**

so Magnetic Fields bend

considered as forces on particles, F = qvB

perpendicular to v and B, right hand pointing in F (for +q)

and Electric Fields accelerate

paradigm example of forces on particles: parallel plates: F=EQ

electrons

in a field...in a "bubble chamber"

what's the direction of B?

recap

Electric charges create Electric Fields

Electric charges in motion ("current") create Magnetic Fields

Accelerating electric charges create propagating electromagnetic fields

Electromagnetic fields propagate at the speed of light, "c" in a vacuum

Charged particles are accelerated by Electric Fields

Charged particles are bent by Magnetic Fields

Electromagnetic fields possess energy and can do work

 $c = 3 \times 10^8 \text{ m/s}$

no pushing

think about "regular pushing"...

the prevailing view

physics is done:

```
it seems probable that most of the grand underlying principles [of physics] have been firmly established..."
```

Albert Michelson 1894

Albert Abraham Michelson

Prize share: 1/1

The Nobel Prize in Physics 1907 was awarded to Albert A. Michelson "for his optical precision instruments and the spectroscopic and metrological investigations carried out with their aid".

Photos: Copyright © The Nobel Foundation

Share this:

To cite this page

MLA style: "The Nobel Prize in Physics 1907". *Nobelprize.org*. Nobel Media AB 2014. Web. 28 Feb 2016. http://www.nobelprize.org/nobel_prizes/physics/laureates/1907/>

want a rollicking old time?

as much as physics can be rollicking...

1895, 1896, 1897, 1898, 1899

one weird, weird, weird, weird thing after another

1895 Wilhelm Roentgen

1845-1923

"Roentgen has really gone crazy." ...what Wilhelm Roentgen worried when at the age of 50 he found something unusual in his lab in Wurzburg, Germany.

Everyone studied "cathode ray tubes"—"Crookes Tubes"

1895 Wilhelm Roentgen

1845-1923

"Roentgen has really gone crazy." ...what Wilhelm Roentgen worried when at the age of 50 he found something unusual in his lab in Wurzburg, Germany.

Everyone studied "cathode ray tubes"—"Crookes Tubes"

1895 Wilhelm Roentgen

1845-1923

word got out

he spilled the beans

after 7 exhausting weeks

January 1, 1896 he circulated a picture of the bones of his hand and a description of his experiments: **called them "X."**

Within weeks, it was reprinted in Science, Nature, the French Academie des Sciences and other journals

Within a week of the Paris announcement, confirmation occurred in 4 labs

Within 5 weeks, X-Rays were used to set the broken arm of a boy in Dartmouth

Within a year, a thousand papers were published

within 4 months, Edison is manufacturing

our first Nobel

1 talk1 publicationno profit

suffered terribly during WWI

then

it got strange

what's a particle accelerator?

a device designed to:

accelerate elementary particles to interesting energies

bend them where you want them to go

Accelerator ingredients: E and B

for two configurations of charges and currents

1897 J. J. Thomson

1856-1940

Could anything at first sight seem more impractical than a body which is so small that its mass is an insignificant fraction of the mass of an atom of hydrogen?

What are these particles? Are they atoms, or molecules, or matter in a still finer state of subdivision?

J.J.'s confusion was shared in 1897.

"J.J. was very awkward with his fingers, and I found it very necessary not to encourage him to handle the instruments! But he was very helpful in talking over the ways in which he thought things ought to go."

H. F. Newall, onetime assistant to

H. F. Newall, onetime assistant to the young Professor Thomson.

everyone studied cathode ray tubes

technologies enabled new experiments

J.J. enjoyed:

- 1. better vacuum and better batteries
- 2. an un-prejudiced mind.
 German, Walter Kaufmann did
 everything better than JJ

except open his mind.

laboratory: Cavendish Laboratory

location: Cambridge University, U.K.

established: 1874

notable directors: James Clerk Maxwell, Lord Rayleigh, J.J.

Thompson, Ernest Rutherford, Neville Mott

type of lab: general purpose physical sciences

laboratory:

Cavendish Laboratory

Nobel Prizes:

- Lord Rayleigh (Physics, 1904)
- Sir J.J. Thomson (Physics, 1906)
- Lord Ernest Rutherford (Chemistry, 1908)
- Sir Lawrence Bragg (Physics, 1915)
- Charles Barkla (Physics, 1917)
- Francis Aston (Chemistry, 1922)
- Charles Wilson (Physics, 1927)
- Arthur Compton (Physics, 1927)
- Sir Owen Richardson (Physics, 1928)
- Sir James Chadwick (Physics, 1935)
- Sir George Thomson (Physics, 1937)
- Sir Edward Appleton (Physics, 1947)
- Lord Patrick Blackett (Physics, 1948)
- Sir John Cockcroft (Physics, 1951)
- Ernest Walton (Physics, 1951)
- Francis Crick (Physiology or Medicine, 1962)
- James Watson (Physiology or Medicine, 1962)
- Max Perutz (Chemistry, 1962)
- Sir John Kendrew (Chemistry, 1962)
- Dorothy Hodgkin (Chemistry, 1964)
- Brian Josephson (Physics, 1973)
- Sir Martin Ryle (Physics, 1974)
- Anthony Hewish (Physics, 1974)
- Sir Nevill Mott (Physics, 1977)
- Philip Anderson (Physics, 1977)
- Pjotr Kapitsa (Physics, 1978)
- Allan Cormack (Physiology or Medicine, 1979)
- Sir Aaron Klug (Chemistry, 1982)
- Norman Ramsey (Physics, 1989)

JJ's experiment

presumed particles

presumption of particles

The measurement is the ratio of the charge to the mass:

if you assume that the beam is made of particles.

clever, actually

His assumption was that there is a something with an m & a q!

$$\frac{q}{m} = 1.76 \times 10^{11} \mathrm{C/kg}$$
 1000 times larger than Hydrogen.

Either: the "corpuscle" has huge charge or tiny mass.

Nobel 1906

Share this:

The Nobel Prize in Physics 1906

Joseph John Thomson

Prize share: 1/1

The Nobel Prize in Physics 1906 was awarded to J.J. Thomson "in recognition of the great merits of his theoretical and experimental investigations on the conduction of electricity by gases".

Photos: Copyright © The Nobel Foundation

"The Nobel Prize in Physics 1906". *Nobelprize.org.* Nobel Media AB 2014. Web. 10 http://www.nobelprize.org/nobel_prizes/physics/laureates/1906/>

"spin" is a defining quality of an electron..later

particle: electron

symbol: e

charge: -1e

mass: $m_e \neq 9.0 \times 10^{-31} \text{ kg} \sim 0.0005 \text{ p}$

spin: 1/2

category: fermion, lepton

Tools of the trade

Particle Accelerators

Particle Detectors

Telescope Observatories

more convenient energy units

"electron volts"

remember that energy gained by particle of charge ${\cal Q}$ accelerated through a potential, ${\cal V}$

$$U = QV$$

get rid of the 10-19

If you're dealing with particles of the fundamental charge $e=1.6 \times 10^{-19} \, \mathrm{C}$

$$U = QV$$

1 Volt What's the energy gained by say, an electron - some thing possessing the fundamental charge of e? accelerated through 1 Volt = 1 J/C?

$$U=QV$$

$$U=eV=1.6\times 10^{-19}\mathrm{C}\times 1\mathrm{\ J/C}$$

$$U=1.6\times 10^{-19}\mathrm{\ J}\equiv 1\mathrm{\ electron\ volt}$$

the energy of accelerators

often quoted in terms of

keV, MeV, GeV, or TeV

10³, 10⁶, 10⁹, 10¹² electron volts

LHC proton beams: currently 13 TeV

a TV? keV's