hi

Day 18, 20.03.2018

Einstein's Theory of Special Relativity, 5

housekeeping

Gotta come to class

question about anything? I'll make a movie for you: Special Relativity:

Hobson_Relativity.pdf is chapter 10 out of Hobson

Also, chapter 2 in Oerter is good.
need this and next lecture for HW! So HW7 due Sunday, rather than Friday MasteringAstronomy registration expiration now set to March 15.

honors project began

https://qstbb.pa.msu.edu/storage/Homework_Projects/honors_project_2018/
contains the first instructions: the plan \& tutorial
Minervalnstructions1_2018.pdf
dates:
complete first part, March 16
analyze data and complete writeup, April 20

is Relativity

the case?
I showed you two classic tests

the airport, going fast

some time interval

Energy
a resistance to acceleration
inertia
the measure of inertia
mass

classical dynamical quantities

New, relativistic quantities reduce to these when u / c is very small

These have to change!

relativity and energy

through the back door...
there's a "real" derivation, but too much mathematics

we took a quick aside

approximating functions
see Lesson 3

what equation comes to mind?

 when you're on the spot?Why the binomial expansion of the relativistic gamma function, of course. Because, Relativity.
$\gamma=\frac{1}{\sqrt{1-\beta^{2}}} \sim 1+\frac{\beta^{2}}{2}+\frac{3 \beta^{4}}{8}+\frac{5 \beta^{6}}{16}+\frac{35 \beta^{8}}{128}+\frac{63 \beta^{10}}{256}+\frac{231 \beta^{12}}{1024}+\frac{429 \beta^{14}}{2048}+0[\beta]^{15}$

now let's play

refers to:
entomology:
example:
mass of an object in its own rest frame (related to Rest Energy, the mass-energy of an object in its own frame)
"rest" implying...not moving
the rest mass of the electron is
$9.109 \times 10^{-31} \mathrm{~kg}$

- conve/t
 mass
 int/o
 energy"

no.

$$
\$=€ \underbrace{1.06}_{\text {just a conversion factor... }} \text { both currency, can both buy stuff }
$$

Mass is energy and energy is mass.

> I could speak of the energy of mass... and the mass of energy and I will.

a big conversion factor
cheat shirt:

Energy

lots of pent-up energy in an apple mass of the apple $=100 \mathrm{gm}=0.1 \mathrm{~kg}$ $c^{2}=9 \times 10^{16} \mathrm{~m}^{2} / \mathrm{s}^{2}$
$E_{m}=m c^{2}$
Motion energy = 1 Joule

$$
=(0.1)\left(3 \times 10^{8}\right)^{2}=\text { Mass energy }=9,000,000,000,000,000 \text { Joules! }
$$

$$
E=m c^{2}
$$

cheat shirt
the mass of a penny is
$3 \mathrm{gm}=3 \times 10^{-3} \mathrm{~kg}$
The speed of light squared is:
$c^{2}=9 \times 10^{16} \mathrm{~m}^{2} / \mathrm{s}^{2}$

How many Joules of energy is trapped in that mass?
that is...what's the rest energy of a penny?

cheat shirt

the mass of a penny is

$$
3 \mathrm{gm}=3 \times 10^{-3} \mathrm{~kg}
$$

The speed of light squared is: $c^{2}=9 \times 10^{16} \mathrm{~m}^{2} / \mathrm{s}^{2}$ $E_{m}($ penny $)=27 \times 10^{13} \mathrm{~J}$

Aircraft Carrier Nimitz: 91,400 tons at 32 knots:

$$
K(\text { Nimitz })=1.1 \times 10^{10} \mathrm{~J}
$$

the new

 energyMass in rest frame, - "rest mass"

$$
m
$$

Energy related to mass, - "rest energy"

$$
E_{m}=m c^{2}
$$

Energy related to motion, "kinetic,"

$$
K
$$

Total energy of anything, I'll call E_{T}

$$
E_{T}=E_{m}+K
$$

what "mass" really is: "trapped energy"

down this rabbit hole

if an object has mass it has energy
if an object has energy it has mass

play some more

look at the total energy

$$
E_{T}=m \gamma c^{2}
$$

One way to interpret this is to associate gamma and m .

$$
E_{T}=(m \gamma) c^{2} \quad \text { so } \quad E_{T}=m_{R} c^{2}
$$

...and speak of a speed-dependent "relativistic mass."

$$
m_{R}=\gamma m \quad \text { so } \quad \frac{m_{R}}{m}=\gamma
$$

and increase of mass with velocity

 remember the inertia issue?

if a proton is going at 0.95% of the speed of
light and has mass of $1 p$
how massive does it appear to be?

relativistic mass

let's look

$$
E_{T}=E_{m}+K
$$

at the
kinetic energy

$$
K=E_{T}-E_{m}
$$

$$
K=m \gamma c^{2}-m c^{2}
$$

$$
K=m c^{2}(\gamma-1)
$$

mass energy:

$$
E_{m}=m c^{2}
$$

total energy:

$$
E_{T}=m \gamma c^{2}
$$

kinetic energy?

Fully

 relativistic now

You might want to remember this:

energy of motion...Kinetic Energy
+ energy of mass...Rest Energy
Total energy of an object

there aren't any other kinds of energy

from this point on:

if I refer to the rest mass*...I'll say so
otherwise, "mass" is this velocity-dependent quantity
*(This is not how we speak in polite particle physics circles...where "mass" is a constant always.) But, I think for non-specialists this is more clear.

a useful

fun fact...just with a little algebra...

invariant

	$E_{m}=m c^{2}$
$E_{T}=m \gamma c^{2}$	
$p=m \gamma v$	
and an	
important	$E_{m}^{2}=E_{T}^{2}-p^{2} c^{2}$
no velocity dependences, just a number...	

"Energy-momentum relation"...

$$
E_{T}^{2}=\left(m c^{2}\right)^{2}+(p c)^{2}
$$

Energy/momentum relations:

the mass of an object in its own frame
"relativistic mass"... $m_{R}=m \gamma$
the mass of a moving object
"Energy"... $E_{T}=m \gamma c^{2}$
the total Energy of a moving object

$$
\text { "rest Energy"... } E=m c^{2}
$$

Kinetic Energy... $K=m c^{2}(\gamma-1)$

> the mass-energy of an object in its own frame

Relativistic momentum... $p=m \gamma u$
momentum for each component of space

Energy-momentum relation... $E_{T}^{2}=\left(m c^{2}\right)^{2}+(p c)^{2}$
an alternative, useful expression

isn't anything constant?

glad you asked
three things are always, always constant "Invariants" C $m c^{2}$

Einstein preferred "Invariant Theory" to "Relativity"

Cousin Quantities!

- Space and time are not separate entities, but linked as "spacetime"
- Electric and magnetic fields are not separate entities, but linked as "electromagnetism"
- Energy and momentum are not separate entities, but linked as "4-momentum"

HV transmission lines feed substations?
$138,000 \mathrm{~V}$ is common (BWL for example)
Assume that arc is at $138,000 \mathrm{~V}$, so electrons have that energy
...which would be the Kinetic Energy

an exercise in "electron volts"
What's the rest energy?
What's the rest mass?
What's the speed of the electrons?
What's the momentum of one of the electrons?

This will be on video and figure into
homework
What's the relativistic mass of one of the electrons?
What's the total energy of one of the electrons?
collision
from
earlier

where

mechanical

energy was not conserved.

Now...energy conservation is different:

$$
E_{(\text {before })}=E_{(\text {after })}
$$

$$
\begin{aligned}
& {\left[E_{(\text {Object 1) }}\right]+\left[E_{(\text {Object 2) }}\right]=\left[E_{(\text {Object 12) }}\right]} \\
& E_{m(1)}+K_{l}+E_{m(2)}^{E_{m}}+K_{2}=\underline{E_{m 12}}+K_{12} \\
& \text { brand new thing! }
\end{aligned}
$$

a

collision

from
earlier
where mechanical energy was not conserved.

$$
\text { systems' energy of masses }+ \text { KE's }=\text { system's energy of mass }+ \text { KE }
$$ brand new thing!

$$
m(1) c^{2}+m(2) c^{2}+K(1)+K(2)=M(12) c^{2}+K(12)
$$

$$
M(12) c^{2}=m(1) c^{2}+m(2) c^{2}+K(1)+K(2)
$$

$$
M(12) c^{2}>m(1) c^{2}+m(2) c^{2}
$$

and they stick together, and stop

But now, the mass of the stuck-together system is more than the masses of the projectiles...
inelastic collision

But before we cer ainly would have said:

$$
m+m p=M_{12}
$$

The energy of motion has become energy of mass.

this is how

we can take two protons, crash them together, and produce 2 "top quarks"...

each of which has the mass of 170 protons

conserved quantities:

3 of them now:
Energy Conservation:
both mass-energy and kinetic energy are counted

Momentum Conservation
energy-momentum conservation

Energy Conservation in a collision:

$$
A+B \rightarrow C+D
$$

$\left[\right.$ MassEnergyo $\left.(\mathrm{A})+\mathrm{KE}_{0}(\mathrm{~A})\right]+\left[\right.$ MassEnergy $\left.{ }_{0}(\mathrm{~B})+\mathrm{KE}{ }_{0}(\mathrm{~B})\right]=$

> [MassEnergy(C) + KE(C)] + [MassEnergy(D) + KE(D)]

$$
\begin{aligned}
& {\left[m(A) c^{2}+K(A)\right]+\left[m(B) c^{2}+K(B)\right]=} \\
& \quad\left[m(C) c^{2}+K(C)\right]+\left[m(D) c^{2}+K(D)\right]
\end{aligned}
$$

particle colliding beam

Use head-on collisions to make objects moremassive than protons. Make Two things that each have M (thing) $=3.5 \bullet M_{p}$

the reaction $p(L)+p(R) \rightarrow T 1+T 2$
the Feynman
Energy equation: Diagram

$$
\begin{aligned}
\frac{E_{T, 0}(L)+}{E_{T, 0}(R)} & =E_{T}(\text { thing })+E_{T}(\text { thing 2 }) \\
1+3+1+3 & =3.5+3.5+ \\
8 & =7
\end{aligned}
$$

what about the

"energy of mass" and "mass of energy" crack?

suppose we have a bound system

 What holds the electron to the proton?Hydrogen
Atom

Last week: the electrostatic force, or the Electric field, right?

Remember from Chemistry:
What's it take to ionize* Hydrogen?

You must supply 13.6 eV
*make the electron free of the proton's influence

energy

diagram

for H

The mass of a hydrogen atom is LESS than the sum of $m_{p}+m_{e}$
No negative binding energy...just a "mass deficit" in the attraction of the P and e.
The energy is in the field.

a hydrogen atom, take 2

 weighs less than the components of a hydrogen atom
so it can't fall apart into its components

 where is that "missing mass"?in the energy of the Electric Field,

the '‘mass deficit'" in nuclei

 is observable and works for good and for ill.It happens many ways, here is one:
"Uranium 235" is a big nucleus of 92 protons and 143 neutrons
a bound system like an atom
but much stronger!

Periodic Table of Elements

$$
90 \mathrm{Zr}
$$

$$
\text { the } \mathrm{M}\left({ }^{235} \mathrm{U}\right)<143 \times \mathrm{M} \text { (neutron) }+92 \times \mathrm{M} \text { (proton) }
$$

so, it's "bound" like Hydrogen

But when a neutron tickles it... the mass deficit in binding energy is released as K...which becomes heat in nuclear reactors
$M\left({ }^{235} \mathrm{U}\right)+\mathrm{M}($ neutron $)>M\left({ }^{143} \mathrm{Nd}\right)+M\left({ }^{90} \mathrm{Zr}\right)+3 \times M($ neutron $)$
by 200 MeV
$1 \mathrm{gm}{ }^{235} \mathrm{U}$ releases $23,000 \mathrm{~kW}-\mathrm{h}$
about 25 households' energy needs

looky

here...

$$
E_{T}^{2}=\left(m c^{2}\right)^{2}+(p c)^{2}
$$

Energy and momentum are related for massless objects...

$$
E=p c
$$

What about the negative solution?

$$
E_{T}= \pm \sqrt{\left(m c^{2}\right)^{2}+(p c)^{2}}
$$

so, how was this all received?

According to Einstein's sister,
...he anticipated a large reaction with much criticism
What he got at first was silence.
oh, a nice note from Max Planck asking for some clarification then a seminar by Planck in Berlin which touched on Relativity...

- only then... a little professional attention, to "Prof. Einstein, University of Bern"

The first paper published on Relativity by not-Einstein:
also by Planck, who derived the relativistic momentum relation, $p=\gamma m v$

The 1908 Minkowski lecture, in which he worked out completely in modern form the mathematics of relativity and the spacetime view got people's attention

What about experiment?

the first experimental confirmation

New experiments were done,

and by 1910, the results were:

Kaufmann lost again...Max Planck corrected his analysis

These results are from 1910 for three experiments, and the curve is the special relativity prediction

From this point on relativity has become a part of everyday scientific and engineering life

shift gears

special relativity \rightarrow general relativity

Special

Relativity

What about most of the universe...?

Where gravitation is a fact of life?

In particular...the action-at-a-distance thing.

Think about the tides...caused by Moon

created a problem

That violates the rules of Special Relativity

what's worse

Masses appearing different from different frames?

How do you deal with
Newton's Universal
Gravitational formula?

Start length-contracting the distance?

Worrying about Gravity led Einstein to

think hard about
SPACE and TIME
moying coordinate systems
acceleraling

stupid
 elevator

 trick, \#1 gravitational attraction
stupid elevator trick, \#2

 gravitational attraction

Here comes a Relativity-like statement:

similar to Galileo's ship-hold...
"you can not perform any mechanical experiment to tell you that a ship is moving at constant speed relative to the land."
or Einstein's...
"you can not perform any mechanical or electromagnetic experiment to tell you that a ship is moving at constant speed relative to the land."

There is no mechanical or electromagnetic experiment he can perform
that would tell him that he was

1. being attracted by the Earth due to gravity or
2. being pulled and accelerated g with no gravitational field anywhere

said another way

any effect in an accelerated rest frame
should occur in a rest frame at rest in a gravitational field

