hi

Day 26, 17.04.2018
Particle Physics 1

housekeeping

The end game: next slide Particle Physics:

Readings: Oerter and Hobson

Hobson_PP.pdf is chapter 17 out of Hobson
Homework \#12 is all from MasteringPhysics - normal due date Feynman Diagram rules

3 movies in the lecture slide directory - you'll need them for homework and the final
they are: primitiveDiagrams_X.mp4 where $X=0,1,2$

last 2 weeks \& final

Homework \#13 will be assigned 4/21 and due 4/28 - normal rotation
On-line final exam will be assigned Sunday, $4 / 29$ and due Tuesday night, May 1
will cover material since midterm plus the last week of class
There is 1 more 10 point quiz (stay tuned)...
only the shadow knows when
Remember when I was sick?
been trying to catch up, but not going to make it. Hence:
Final Exam day:

1. You'll arrive at 0745 on May 4, here. I know.
2. I'll provide bagels. You supply liquids.
3. We'll have a quiz.
4. I'll finish with about a 1 hour grand finale, Ialapalooza, mind-bending lecture
5. You'll do your Feynman Diagram Project
6. There will be no poster project this year

honors project began

https://qstbb.pa.msu.edu/storage/Homework_Projects/honors_project_2018/
contains:
the first instructions: the plan \& tutorial
the second instructions - v2 uploaded, added a missing student
the data, assigned by name in the second instructions - see next

dates:

complete first part, March 16
analyze data by April 24 and hand in complete writeup at the final exam

the data

should have been in zipped format

rather, somehow they were unzipped in some process

fixed: now
https://qstbb.pa.msu.edu/ storage/Homework_Projects/ honors_project_2018/

| | Last modified | Size | |
| :--- | :--- | :--- | :--- | :--- |
| | | | |

I need a Section 2

to test the Z-path uploading machinery and instructions

modern

 intepretata photon poof-disappears

a little more specific

it's not like the photon is now "in" the electron
the photon pops the electron- positron pair out of the Ur electron field and itself disappears back into the Ur photon field.

Feynman Diagrams

now for real.

creation and annihilation of can be embodied in Feynman Diagrams

the

symbols

of
Feynman
Diagrams

each line represents an entire "history" of trajectories

to go from A to B, represent all histories with a single line.

Feynman's lines include rules on how to calculate the possibilities in a relativistically consistent way.

Feynman's approach is really sneaky and really cute
energy and time appear together in the equations:

In essence, this:

$$
\begin{array}{ll}
\text { either energy solution: } & (\pm E)(t) \\
\text { just the -E solution: } & (-E)(t) \\
\text { move the - sign: } & (E)(-t)
\end{array}
$$

Get a whole new interpretation of antimatter

antiparticles

can be intepreted as particles moving backwards in time. that's it.

we'll do

 this in1. I'll show you how spacetime can be manipulated to predict new physical processes out of old ones
making use of the Feynman idea that antiparticles moving forward in time are the same as particles moving backwards in time

An anti-electron...coming forwards into an initial state:

is the same thing as
An electron coming backwards out of an initial state

An anti-electron...coming forwards out of a final state:

is the same thing as
An electron coming
backwards into a final state
2. But the vast majority of our use will be to develop the handful (11) of "Primitive Diagrams" that we'll put together like a puzzle
to predict all possible physical processes in the
"Standard Model" of particle physics
refers to:
entomology:
example:
any particle with half-integer spin
from Fermi's theoretical work on the behavior of large numbers of Fermions
electron, proton, neutron
refers to:
entomology:
example:
any quantum object with integer spin from Satyendra Nath Bose, who worked on the effects of multiple boson aggregates
photon, pion, Higgs Boson

the key

WM

Vector Boson, spin 1, e.g., photon

the different kinds of lines

look at your Primitive Diagram Sheet

gluon, spin 1

scalar Boson, spin 0, e.g., Higgs Boson

the first theory of Feynman's

"Quantum Electrodynamics" or "QED"

the full theory of the physics of photons and electrons

strap in

with pencil in hand

first idea

one can take a single Feynman Diagram that describes a process
and by rearranging it in spacetime, "predict" additional physical processes

Dirac's story
\& Feynman's picture

space diagram

spacetime diagram Feynman diagram

Dirac had photons creating an electron

Feynman's

 calculus allows that

The Dirac hypothesis is called "Pair Production": photon in, electron \& positron out

Now, remember that we treat $c t$ and x identically...

The physics does not care which orientation is which.

note:

I've been banging on you to keep the slopes right you know, photons have slope associated with c

We'll relax that now.

can always

 rotate any Feynman Graphand get a new one

BUT

We don't deal with particles moving backwards in time when it happens...we fix it!

Feynman's trick

depends on the in and out states.
if some manipulation leaves you with particles going the "wrong" direction?
fix it.

particles in time

An anti-electron...coming into an initial state to a node:

Yes, this makes sense
is the same thing as
An electron coming out of an initial state (?)

Nope, this makes no sense...time-backwards

An anti-electron...coming out of a final state:

Yes, this makes sense
is the same thing as
An electron coming into a final state (?)

Nope, this makes no
sense...time-backwards

Feynman had rules

We'll have slightly different rules
but similar in spirit

Rule 1.

If you flip a line's arrow forward or backward in time, you change the particle to antiparticle or antiparticle to particle
my rotated diagram... spread out:

look at this

electron comes along and spits out a photon, recoils and goes on its way

regular old radiation

Rule 2.

fermion lines

 must be continuousnotice that the arrows make the lines continuous 1 -

This and more is in those 3 movies
primitive

diagrams

are general

but this is completely general...for any charged fermion:
f could be electron, positron, proton, antiproton...and more - any electrically charged fermion.

Their diagrams are identical.

Primitive Diagram Scorecard

your first entry

Primitive Diagrams

particle physics

particle:
 neutron

symbol:
charge:
mass:
spin:
category:
$1.6749 \times 10-27 \mathrm{~kg}, 939.6 \mathrm{MeV} / \mathrm{c}^{2}$ 1/2
fermion, baryon, $\mathrm{I}=-1 / 2, \mathrm{~B}=1$

particle:
 proton

symbol:
charge:
mass:
spin:
category:
$1.6726 \times 10^{-27} \mathrm{~kg}, 938.2 \mathrm{MeV} / \mathrm{c}^{2}$ 1/2 fermion, baryon, $\mathrm{I}=1 / 2, \mathrm{~B}=1$

important realizations

nuclear force

exchange force
weak force: neutrinos

beta decay

the "weak force"
beta decay something seriously wrong
remember: \#neutrons doesn't affect the Chemistry
can add neutrons
as long as the nucleus is energetically stable
"isotopes"

${ }^{13} \mathrm{C}$: 1.1% \& stable
${ }^{14} \mathrm{C}$: trace \& unstable

some isotopes are unstable

they beta-decay
14C: trace amounts \& unstable
But there was a problem with beta decay

Suppose we have a firecracker exploding into two pieces:
beta decay seemed like this
when you expect this

energies

in a "two

body

decay"

are single-valued

Do 100 decays and measure the energy of either object...

Should get a particular speed for the electron

But this is what happened in beta decay. spread-out values for speed (energy)!

[^0]
suppose

you have

a ${ }^{6}$ two

body

 a sinatintapparent crisisfor 1 enemand decayshapparent crisisp tor energynenum two objectsDo 100 explosions and measure the energy of either object...
because of the conservation of
conservation +

Fig. 5. Energy distribution curve of the beta-rays.

But this is what happened in beta decay Assumed to be 2 bodies:
Nucleus ---> e and Nucleus'

Wolfgang Pauli, distressed at the crisis and unwilling to part with energy conservation - like Bohr suggested - 1930 made a bold proposal, in an off-hand way:
> "I have come upon a desperate way out. To wit, the possibility that there could exist in the nucleus electrically neutral particles which I shall cal neutrons.. The mass...should not be larger than 0.07 times the proton...the ... beta [energy] would then be understandable from the assumption that...a [neutron] is emitted along with the electron...I admit that my way out may not seem very probable...But only he who dares wins
. . . unfortunately I cannot appear personally in Tubingen since a ball which takes place in Zurich makes my presence here indispensable."

Oops: James Chadwick called his new particle the "neutron"
Enrico Fermi called Pauli's the neutrino...little neutron

The prediction of the Neutrino ...thought to be undiscoverable! and massless!

the idea hung around

the discovery of the neutron in 1932 gave Enrico Fermi an idea

Fig. 5. Energy distribution curve of the beta-rays.

Enrico Fermi
1901-1954
experimental \&
theoretical physicist!
Nobel Laureate 1938

Probably 2, maybe 3 Nobel prize-worthy experiments.
Probably 2, maybe 3 Nobel prize-worthy theoretical products.
There will never be anyone like Enrico Fermi again.

Enrico Fermi 1901-1954

(actually in a cafeteria in Ann Arbor, 1935)

Enrico

Fermi

Nobel 1938

not for beta decay

for bombarding nuclei with neutrons and causing fission

Nobelprize.org
The Official Web Site of the Nobel Prize

Nobel Prizes Alfred Nobel
Educational
Video Player
Nobel Organizations
\square
Home / Nobel Prizes / Nobel Prize in Physics / The Nobel Prize in Physics 1938

About the Nobel Prizes
Facts and Lists
Nobel Prize in Physics All Nobel Prizes in Physics Facts on the Nobel Prize in Physics
Prize Awarder for the Nobel Prize in Physics

Nomination and Selection of Physics Laureates
Nobel Medal for Physics
Articles in Physics
Video Interviews
Video Nobel Lectures
Nobel Prize in Chemistry
Nobel Prize in Physiology or Medicine

Nobel Prize in Literature
Nobel Peace Prize
Prize in Economic Sciences Nobel Laureates Have Their Say

Brinter Friendly	(7) Share	\triangle Tell a Friend	Q Comments	
1901		2012		
			4. 1938	-
Sort and list Nobel Prizes and Nobel Laur	$\stackrel{+}{*}$	Prize category: Physics		$\stackrel{*}{*}$

The Nobel Prize in Physics 1938
 Enrico Fermi

The Nobel Prize in Physics 1938 V
Nobel Prize Award Ceremony \quad F
Enrico Fermi

Enrico Fermi

The Nobel Prize in Physics 1938 was awarded to Enrico Fermi "for his demonstrations of the existence of new radioactive elements produced by neutron irradiation, and for his related discovery of nuclear reactions brought about by slow neutrons".

Photos: Copyright (c) The Nobel Foundation

Fermi

Theory of

Beta

Decay

uses the Dirac

 ideas of quantum electrodynamics
particle creation and annihilation

Fig. 5. Energy distribution curve of the beta-rays.
$\mathrm{m}_{\text {neutron }}>\mathrm{m}_{\text {proton }}$
a smidgen.

a free neutron has a lifetime of about 11 minutes. He sent the paper to Nature, but it was rejected:
"it contained speculations which were too remote from reality"

from his original paper for different nuclear species parameters

discovery of the neutrino

took 25 years
experimental tour de-force

Neutrinos very weakly interact in matter lightyears of lead to stop one!

exchange force

the modern view:
if there's a force...there's a field
if there's a field...there's a particle
in 1932 Heisenberg had good idea:
the notion of an "Exchange Force"
the simplest, but most important modeling suggestion ever

Heisenberg: "Hmm. Electrons spontaneously appear out of nuclei."’
maybe they're in the nucleus all the time?
maybe they're even holding it together?

Exchange

Force

The proton is playing catch with itself

with all he knew about: electrons and protons
maybe beta decay?

He knew that sometimes nuclei just spit out an electron. Rutherford's beta decay

analogy: a repulsive exchange force a repulsive exchange force

analogy: an attractive exchange force an attractive exchange force

the idea that the forces of nature are propagated by quanta
entomology:
example:

Heisenberg's picture of exchanging them
the photon!

piece the primitives together

we know

one force

electromagnetism
 electricity

magnetism
united by Relativity
remember?

The modern idea:
The force of electromagnetism is "propagated" by the photon.

Multiple names: "propogator"
"Intermediate Vector Boson"

I'll call the photon: the "Messenger Field for Electromagnetism"

There's something funny about the nucleus that it is.

charge independence

Heisenberg's original idea was before the neutron
his protons playing catch with electrons?
nope.

remember:

chemistry from \# protons = \#electrons
to "assemble" ${ }^{12} \mathrm{C}$
they have to attract one another

NOT electromagnetism

remember:

chemistry from \# protons = \#electrons
to "assemble" ${ }^{12} \mathrm{C}$

they have to attract one another

But how does it hold together?

why does any nucleus beyond Hydrogen hang together?
those protons want to get away from one another
the electrostatic force of repulsion
Is countered...by an even stronger force

Strong Force

1934
Hideki Yukawa

The Strong Force is a stronger than...anything in the universe. two competing forces:

Electromagnetic Force

Strong is stronger than... anything.

 two competing forces:
Electromagnetic Force

Strong is stronger than... anything.

 two competing forces:Strong Force

Strong is stronger than... anything.

 two competing forces:Strong Force
but only over a very short range...
the STRONG force
overwhelms the electromagnetic force

but only over a very short range...
the STRONG force
overwhelms the electromagnetic force

neutrons

and

protons

in the nucleus, the proton and neutron
are two manifestations of the same particle

whatever it is that holds the nucleus together: it's symmetric between the proton and the neutron

For all practical purposes - in holding the nucleus together - the neutron and proton are the same particle - the "Nucleon."

If we ignore electromagnetism...the proton \& the neutron are

 very much alike - we can treat them as being the same particle
neutrons

and

protons
act like they are identical particles
the electric charge?
as a force...Yukawa's force is 100 times the electromagnetic

For nuclear forces: treat p and n as identical and differing only by a "quantum number" called "Isospin"
I

$$
\begin{aligned}
& \text { (} \\
& \mathbf{N} \\
& \text { "nucleon" }
\end{aligned}
$$

A neutron... is a "nucleon" with "isospin down" A proton... is a "nucleon" with "isospin up"

They go together...within the strong, nuclear force.
How?
refers to:
entomology:
example:
either a proton or a neutron
from "nucleus"...the "-on" tends to be a particle name
"nucleon force"

hadron

refers to:
any particle that interacts via the Strong Force
entomology:
example:
$\alpha \bar{\rho} \rho o ́ \sigma$ "hadros" "large", "massive"
proton and neutron not electron, not photon

remember

Nature is
 clumpy

If there is a force...there's a field

If there's a field, there's a quantum to go with it.

The nuclear force is "active" over a short distance

$$
\sim 10-15 \mathrm{~m}
$$

Yukawa knew that.
uncertainty
certainly
to the
rescue
brilliant
observation by
Yukawa
maybe there's a quantum that is active only over the size of a nucleus: "U"
another exchange force/particle?

So: $p \rightarrow n+U$?

Suppose U travels at c within a nucleus... $\Delta t=\Delta x / c$
Then Uncertainty could estimate U's mass... $\Delta E \Delta t=h / 4 \pi$

$$
m_{U}=\Delta E / c^{2}
$$

$$
m_{U} \stackrel{?}{\approx} 100 \times 10^{6} \mathrm{eV}=100 \mathrm{MeV}
$$

the most important thing in particle physics?
getting the name right.
the "U-kon"? thankfully, no.
the "meson?" Why yes, I think I like it.
medium mass...

not too big (proton) not too small (electron): just right.

the hunt was on

to find the Yukawa Particle

but WWII got in the way

Post-war emulsion exposures were startling

proton in cosmic rays

Nitrogen nucleus in cosmic rays

many of these sort:

 something unknown...20,000 stereo photos --> 1600 usable tracks in $3 \mathrm{~cm}^{2}$ plate

strange things in cosmic rays
thick photographic substrates

two

discoveries

This took some unraveling.

The "meson" appeared in and initiated nuclear collisions

The unknown particle seemed to live about a $6 \mu \mathrm{sec}$ too long to be a meson

The winning proposal:
for the price of one

symbol:
charge:
mass:
spin:
category:
π
$+,-, 0$
$139 \mathrm{MeV} / \mathrm{c}^{2}$,
0
Boson, hadron, meson

analogy:

an attractive exchange force
π

"pion"

proton or neutron
remember: chemistry from the \# protons = \#electrons
to "assemble" ${ }^{12} \mathrm{C}$
they have to attract one another
that should bother you!
stay tuned

the

Yukawa

particle

is the pion

These coupling strengths are large - strong.

In technical terms we call this...the strong interaction.
three
forces now of vastly different strengths

Electromagnetic force 0.007

Weak force 0.000001

particle: MUOn
symbol:
charge:
mass:
105.7 MeV/c²
spin:
category:
1/2
Fermion, lepton

Electron just more spin: critum...heavier.

BTW

there are as many neutrinos as there are "electrons"
we got the original electron, we got an electron-neutrino the muon, a muon neutrino

particle:
 muon-neutrino

symbol:
charge:
mass:
spin:
category:
ν_{μ} 0

0 or 0.4-ish to 1-ish eV/c² 1/2

Fermion, lepton
particle: tau-neutrino
symbol:
charge:
mass:
spin:
category:
ν_{τ}
0
0 or 0.4-ish to 1-ish eV/c²
1/2
Fermion, lepton

FAMILIES

Nature prefers
like-particles

Lepton

Families
electrons and a neutrino
muons and a neutrino
taus and a neutrino

These sorts of patterns are a huge deal.

Q

$$
-1
$$

Identical in every way...except mass

$$
\begin{aligned}
& m_{e} \sim \frac{1}{1835} \times m_{p} \\
& m_{\mu} \sim 10 \% \times m_{p} \\
& m_{\tau} \sim 1.8 \times m_{p}!!
\end{aligned}
$$

jargon alert: lepton
refers to:
entomology:
example:
originally, an electron, muon, neutrino
" $\lambda \varepsilon \pi t$ tós" (leptos), "fine, small, thin"
electron, muon, neutrino, tau!
back to the 1940s

cosmic

rays

continue

to

surprise

Cloud chamber...with Pb sheet 1946

Manchester University

academic home for many years of...? who else.

Mysterious "Vees" began to crop up...

particle: Kaon
symbol:
charge:
mass:
spin:
category:

K
$\pm 1,0$
493.677 (charged state) $\mathrm{MeV} / \mathrm{c}^{2}$

0
Fermion, baryon, $\mathrm{I}= \pm 1 / 2, \mathrm{~B}=1, \mathrm{~S}=-3$

at the

Bevatron

"cosmic ray" events could be manufactured on earth

at will.

Without knowing details, we can decipher a lot:

1. the direction of the field is such that negatives curve left
2. there are two neutral particles produced at A... which decay at B and C
3. @B: the almost 90 degree opening angle - decay products are the same mass
4. @A: the positive track is a proton (bubble density at end), other a pion

yes, more

 strange particles$$
\begin{array}{llll}
\Lambda \rightarrow p+\pi^{-} & 64 \% & \Sigma^{+} \rightarrow n+\pi^{+} & 51.6 \% \\
\Lambda \rightarrow n+\pi^{0} & 36 \% & \Sigma^{+} \rightarrow p+\pi^{0} & 48.4 \%
\end{array}
$$

"Lambdas"
"Sigmas"
"Cascades"
"K-stars"

$$
\Lambda \rightarrow p+\pi^{-}
$$

particle: Lambda
symbol: $\quad \Lambda$
charge:
mass:
$1,115.683 \mathrm{MeV} / \mathrm{c}^{2}$
spin:
category:
Fermion, baryon, $\mathrm{I}=\mathrm{0}, \mathrm{B}=1, \mathrm{~S}=-1$

By the mid-1950's

things are officially out of control.

by 1955

100's of them

things wer
me what's so "elementary" about that?

The Particle Zoo?

there

were
 clues

patterns and organizing features
began to emerge in the pile of data

Hundreds of experiments, thousands of physicists measuring lifetimes, probabilities, final state multiplicities...and doing it over and over.
organizing
with many
different patterns at a time

Strictly Empirical:
From a 20 year-long accumulation of thousands of different results on production, decay, mass, spin properties of 100's of particles...whole careers. No clue why the patterns.

Various "Quantum Numbers" - all reflecting an underlying "internal symmetry"

Electric Charge Lepton Numbers
Baryon Number
Strangeness
jargon alert: particle quantum numbers
refers to:
quantities that are inherently a part of particles, which are conserved in interactions or decays
entomology:
example:
historical to Bohr and Schroedinger
electric charge, baryon number, lepton number, isospin
this is empirical - it's what Nature seems to do
we have some ideas about how/why
but understanding quantum number rules is work in progress!

Quantum Number:
Electric Charge
something like these will never happen:
so, you'll always see:
total electric charge at the beginning equals total charges at the end

Quantum Number:
Strangeness

a clue

$$
\pi^{-}+p \rightarrow \Lambda^{0}+K^{0}
$$

some particles are easily produced...but only in pairs and they, in turn, are reluctant to decay
of another kind of "number"

Strangeness,

S

strangeness

 seems to come in pairs
assign "strangeness" empirically.

$$
\pi^{-}+p \rightarrow \Lambda^{0}+K^{0}
$$

$$
\begin{array}{lllll}
\mathrm{S}: & 0 & 0 & -1 & +1
\end{array}
$$

Strong interaction

$$
\begin{array}{lllll}
\mathrm{S}: & 0 & 0 & -1 & 0
\end{array}
$$

and yet you do see:

$$
\Lambda \rightarrow p+\pi^{-}
$$

$$
\begin{array}{llll}
\mathrm{S}: & -1 & 0 & 0
\end{array}
$$

Weak
interaction

Production of a subset of all baryons seems to require them to come in pairs.
Strong interactions conserve Strangeness
Decay of those same baryons...notsomuch Weak interactions change Strangeness by 1 unit

the dominant Baryons

Particle	Symbol	Rest Mass $\mathrm{MeV} / \mathrm{c}^{2}$	spin	Q	B	S	Lifetime	dominant decay modes
proton	p	938.3	1/2	+1	+1	0	$>10^{31} y$	
neutron	n	939.6	1/2	0	+1	0	920	$p e^{-} \bar{\nu}_{e}$
Lambda	Λ^{0}	1115.6	1/2	0	+1	-1	2.6×10^{-10}	$p \pi^{-}, n \pi^{0}$
Sigma	Σ^{+}	1189.4	1/2	+1	+1	-1	0.8×10^{-10}	$p \pi^{0}, n \pi^{+}$
Sigma	Σ^{0}	1192.5	1/2	0	+1	-1	6×10^{-20}	$\Lambda^{0} \gamma$
Sigma	Σ^{-}	1197.3	1/2	-1	+1	-1	1.5×10^{-10}	$n \pi^{-}$
Delta	Δ^{++}	1232	3/2	+2	+1	0	0.6×10^{-23}	$p \pi^{+}$
Delta	Δ^{+}	1232	3/2	+1	+1	0	0.6×10^{-23}	$n \pi^{+}, p \pi^{0}$
Delta	Δ^{0}	1232	3/2	0	+1	0	0.6×10^{-23}	$n \pi^{0}$
Delta	Δ^{-}	1232	3/2	-1	+1	0	0.6×10^{-23}	$n \pi$
Xi	Ξ^{0}	1315	1/2	0	+1	-2	2.9×10^{-10}	$\Lambda^{0} \pi^{0}$
xi	$\Xi{ }^{-}$	1321	1/2	-1	+1	-2	1.64×10^{-10}	$\Lambda^{0} \pi^{-}$
Omega	Ω^{-}	1672	3/2	-1	+1	-3	0.82×10^{-10}	$\Xi^{0} \pi^{-}, \Lambda^{0} K^{-}$

the dominant Mesons

Particle	Symbol	antiparticle	Rest Mass $\mathrm{MeV} / \mathrm{c}^{2}$	spin	Q	B	S	Lifetime	dominant decay modes
Pion	π^{+}	π^{-}	139.6	0	+1	0	0	2.6×10^{-8}	$\mu^{+} \nu_{\mu}$
Pi-zero	π^{0}	π^{0}	135	0	0	0	0	920	2γ
Kaon	K^{+}	K^{-}	493.7	0	+1	0	+1	1.24×10^{-8}	$\mu^{+} \nu_{\mu}, \pi^{+} \pi^{0}$
K-short	K_{S}^{0}	K_{S}^{0}	497.7	0	0	0	+1	0.89×10^{-10}	$\pi^{+} \pi^{-}, 2 \pi^{0}$
K-long	K_{L}^{0}	K_{L}^{0}	497.7	0	0	0	+1	5.2×10^{-8}	$\pi^{ \pm} \ell^{\mp} \nu_{\ell}$
Eta	η^{0}	η^{0}	548.8	0	0	0	0	$<10^{-18}$	$2 \gamma, \pi^{+} \pi^{-} \pi^{0}$
Eta-prime	$\eta^{0 \prime}$	$\eta^{0 \prime}$	958	1	0	0	0	...	$\pi^{+} \pi^{-} \eta$
Rho	ρ^{+}	ρ^{-}	770	1	+1	0	0	0.4×10^{-23}	$\pi^{+} \pi^{-}, 2 \pi^{0}$
Rho-naught	ρ^{0}	ρ^{0}	770	1	0	0	0	0.4×10^{-23}	$\pi^{+} \pi^{-}$
Omega	ω^{0}	ω^{0}	782	1	0	0	0	0.8×10^{-22}	$\pi^{+} \pi^{-} \pi^{0}$
Phi	ϕ	ϕ	1020	1	0	0	0	20×10^{-23}	$K^{+} K^{-}, K^{0} \bar{K}^{0}$

anyhow...back to the Zoo problem
all those particles.
There were some hints:

masses

seem to

clump

look at a set of the

 mesons
masses

seem to

clump

look at the

 baryons> as in
> Nature

masses

seem to

clump
look at a different set of the baryons
as in
Nature

[^0]: Fig. 5. Energy distribution curve of the beta-rays.

