

Day 26, 17.04.2018 Particle Physics 1

housekeeping

The end game: next slide

Particle Physics:

Readings: Oerter and Hobson

Hobson_PP.pdf is chapter 17 out of Hobson

Homework #12 is all from MasteringPhysics - normal due date

Feynman Diagram rules

3 movies in the lecture slide directory - you'll need them for homework and the final

they are: primitiveDiagrams_X. mp4

where X = 0, 1, 2

last 2 weeks & final

Homework #13 will be assigned 4/21 and due 4/28 - normal rotation

On-line final exam will be assigned Sunday, 4/29 and due Tuesday night, May 1

will cover material since midterm plus the last week of class

There is 1 more 10 point quiz (stay tuned)...

only the shadow knows when

Remember when I was sick?

been trying to catch up, but not going to make it. Hence:

Final Exam day:

- 1. You'll arrive at 0745 on May 4, here. I know.
- 2. I'll provide bagels. You supply liquids.
- 3. We'll have a quiz.
- 4. I'll finish with about a 1 hour grand finale, lalapalooza, mind-bending lecture
- 5. You'll do your Feynman Diagram Project
- 6. There will be no poster project this year

honors project began

https://qstbb.pa.msu.edu/storage/Homework_Projects/honors_project_2018/

contains:

the first instructions: the plan & tutorial the second instructions -v2 uploaded, added a missing student the data, assigned by name in the second instructions - see next

dates:

complete first part, March 16

analyze data by April 24 and hand in complete writeup at the final exam

the data

should have been in zipped format

rather, somehow they were unzipped in some process

fixed: now

https://qstbb.pa.msu.edu/ storage/Homework_Projects/ honors_project_2018/

	Name	Last modified	Size	Description
	Parent Directory		_	
	ISP220_inspirationaltalk.pdf	2018-03-01 07:10	4.3M	Portable Document Format file
P	MinervaInstructions1_2018.pdf	2018-03-01 07:10	2.3M	Portable Document Format file
P	MinervaInstructions2_2018_2.pdf	2018-04-09 22:11	112K	Portable Document Format file
	Zpathintro.mp4	2018-03-01 07:16	274M	
L)	groupA-2.zip	2018-04-12 12:25	30M	ZIP archive
L)	groupA.zip	2018-04-12 12:25	28M	ZIP archive
L)	groupB-2.zip	2018-04-12 12:25	28M	ZIP archive
D	groupB.zip	2018-04-12 12:25	29M	ZIP archive
N	groupC-2.zip	2018-04-12 12:25	30M	ZIP archive
N.	groupC.zip	2018-04-12 12:25	30M	ZIP archive
N.	groupD-2.zip	2018-04-12 12:25	28M	ZIP archive
	groupD.zip	2018-04-12 12:26	33M	ZIP archive
N	groupE-2.zip	2018-04-12 12:26	30M	ZIP archive
	groupE.zip	2018-04-12 12:26	28M	ZIP archive
U	groupF-2.zip	2018-04-12 12:26	28M	ZIP archive
L.	groupf.zip	2018-04-12 12:26	31M	
	groupG-2.zip	2018-04-12 12:26	29M	
L R	groupG.2ip	2018-04-12 12:26	29M	ZIP dictilive
L R	groupH zin	2018-04-12 12:20	20M	ZIP archive
	groupI-2.zin	2018-04-12 12:26	23M	ZIP archive
с Г	aroupI.zip	2018-04-12 12:26	28M	ZIP archive
	groupJ-2.zip	2018-04-12 12:26	29M	ZIP archive
	groupJ.zip	2018-04-12 12:26	28M	ZIP archive
Ď	groupK-2.zip	2018-04-12 12:27	30M	ZIP archive
L)	groupK.zip	2018-04-12 12:27	31M	ZIP archive
	groupL-2.zip	2018-04-12 12:27	29M	ZIP archive
L)	groupL.zip	2018-04-12 12:26	32M	ZIP archive
	groupM-2.zip	2018-04-12 12:27	29M	ZIP archive
L)	groupM.zip	2018-04-12 12:27	31M	ZIP archive
L)	groupN-2.zip	2018-04-12 12:27	30M	ZIP archive
L)	groupN.zip	2018-04-12 12:27	30M	ZIP archive
L)	groupO-2.zip	2018-04-12 12:27	30M	ZIP archive
D	groupO.zip	2018-04-12 12:27	31M	ZIP archive
N	groupP-2.zip	2018-04-12 12:27	30M	ZIP archive
N.	groupP.zip	2018-04-12 12:27	30M	ZIP archive
N.	groupQ-2.zip	2018-04-12 12:27	31M	ZIP archive
N.	groupQ.zip	2018-04-12 12:27	31M	ZIP archive
	groupR-2.zip	2018-04-12 12:27	30M	ZIP archive
<u>р</u>	groupR.zip	2018-04-12 12:27	28M	ZIP archive
L) P	groupS-2.zip	2018-04-12 12:27	29M	
Ц. .р.	groupS.zip	2018-04-12 12:27	26M	
_] _►	group I-2.2lp	2018-04-12 12:28	31M	
	group I.zip	2018-04-12 12:28	29M	21P archive

Index of /storage/Homework_Projects/honors_project_2018

I need a Section 2

to test the Z-path uploading machinery and instructions

modern intepretat

a photon poof-disappears

a little more specific

what the mathematics tells US

it's not like the photon is now "in" the electron

the photon pops the electron-positron pair out of the Ur electron field and itself disappears back into the Ur photon field.

Feynman Diagrams

now for real.

creation and annihilation of can be embodied in Feynman Diagrams

the symbols of Feynman Diagrams

each line represents an entire "history" of trajectories

to go from A to B, represent all histories with a single line.

Feynman's lines include rules on how to calculate the possibilities in a relativistically consistent way.

Feynman's approach is really sneaky and really cute

energy and time appear together in the equations:

In essence, this: $(\pm E)(t)$ either energy solution: (-E)(t)just the -E solution: (E)(-t)move the – sign:

Get a whole new interpretation of antimatter

<u>antiparticles</u>

can be intepreted as <u>particles</u> moving backwards in time.

that's it.

we'll do this in

two steps

1. I'll show you how spacetime can be manipulated to predict new physical processes out of old ones

making use of the Feynman idea that antiparticles moving forward in time are the same as particles moving backwards in time

An anti-electron...coming forwards into an initial state:

is the same thing as An electron coming **backwards out** of an **initial** state

An anti-electron...coming **forwards out** of a **final** state:

is the same thing as An electron coming **backwards into** a **final** state

2. But *the vast majority of our use* will be to develop the handful (11) of "Primitive Diagrams" that we'll put together like a puzzle

to predict all possible physical processes in the "Standard Model" of particle physics

jargon alert:	fermion	
	refers to:	any particle with h
	entomology:	from Fermi's theo behavior of large r
	example:	electron, proton, r

half-integer spin retical work on the numbers of Fermions

neutron

jargon alert:	bosons	
	refers to:	any quantum objec
	entomology:	from Satyendra Nation the effects of maggregates
	example:	photon, pion, Higgs

ct with integer spin th Bose, who worked ultiple boson

s Boson

key the

the different kinds of lines

look at your Primitive **Diagram Sheet**

 $^{\prime}0000$

scalar Boson, spin 0, e.g., Higgs Boson

fermion, spin 1/2, e.g., electron

Vector Boson, spin 1, e.g., photon

gluon, spin 1

the first theory of Feynman's

"Quantum Electrodynamics" or "QED"

the full theory of the physics of photons and electrons

strap in

with pencil in hand

first idea

one can take a single Feynman Diagram that describes a process

and by rearranging it in spacetime, "predict" additional physical processes

Dirac's story & Feynman's picture

space diagram

photograph

e-

e+

Dirac had photons creating an electron

Feynman's calculus allows that

and more

The Dirac hypothesis is called "Pair Production": photon in, electron & positron out

Now, remember that we treat *ct* and *x* identically...

The physics does not care which orientation is which.

ct

I've been banging on you to keep the slopes right you know, photons have slope associated with c We'll relax that now.

can always rotate any Feynman Graph and get a new one

ct

We don't deal with particles moving backwards in time

when it happens...we fix it!

Feynman's trick

depends on the in and out states.

if some manipulation leaves you with particles going the "wrong" direction?

fix it.

particles in time

An anti-electron...coming into an initial state to a node:

is the same thing as An electron coming **out** of an **initial** state (?)

An anti-electron...coming **out** of a **final** state:

is the same thing as An electron coming **into** a **final** state (?)

Yes, this makes sense

Nope, this makes no sense...time-backwards

Yes, this makes sense

Nope, this makes no sense...time-backwards

Feynman had rules

We'll have slightly different rules

but similar in spirit

Rule 1.

If you flip a line's arrow forward or backward in time, you change the particle to antiparticle or antiparticle to particle my rotated diagram... spread out:

this is the same thing as:

look at this

you know this.

familiar: e

electron comes along and and goes on its way

regular old radiation

electron comes along and spits out a photon, recoils

Rule 2.

notice that the arrows make the lines continuous

 \boldsymbol{e}

fermion lines must be continuous

 $e^{\dot{}}$

This and more is in those 3 movies

primitive diagrams

are general

but this is completely general...for any charged fermion:

f could be electron, positron, proton, antiproton...and more – any electrically charged **f**ermion.

Their diagrams are identical.

Primitive Diagram Scorecard

your first entry

Primitive Diagrams	TIME always	;	
f f f			QED
2	3		Weak Int
6	7		eractions
4	5		Strong Interactions
8	9		Higgs
10	11		Interactions
rmion, spin 1/2, e.g., electron Vector Boson, spin 1, e	e.g., photon gluon, spin	1 scalar Boson, spin 0, e.g., F	figgs Boson
particle physics

particle:	neutron	
	symbol:	n
	charge:	0
	mass:	1.6749 x 10 ⁻²⁷ kg,
	spin:	1/2
	category:	fermion, baryon,

939.6 MeV/c²

I = -1/2, B = 1

particle:	proton	
	symbol:	p
	charge:	+1 <i>e</i>
	mass:	1.6726 x 10 ⁻²⁷ kg,
	spin:	1/2
	category:	fermion, baryon,

938.2 MeV/c²

I = 1/2, B = 1

important realizations

nuclear force

exchange force

weak force: neutrinos

beta decay

the "weak force"

41

beta decay

something seriously wrong

42

remember: #neutrons doesn't affect the Chemistry

can add neutrons

as long as the nucleus is energetically stable

"isotopes"

¹³C: 1.1% & stable ¹⁴C: trace & unstable

some isotopes are unstable

they beta-decay

14C: trace amounts & unstable

But there was a problem with beta decay

notice the funny recoil?

e

Suppose we have a firecracker exploding into two pieces:

beta decay seemed like this when you expect this

45

energies
in a "two
body
decay"
are single-valued

Beta decay was ass Nucleus ---> e and Nucleus'

Do 100 decays and measure the energy of either object...

Should get a particular speed for the electron # of right hand
speeds

But this is what happened in beta decay. **spread-out values for speed (energy)!**

because of the conservation of energy and momentum

 ${\cal U}$

a particular value

suppose you have a "two

body

Do 100 explosions and measure the energy of either object...

But this is what happened in beta decay. Assumed to be 2 bodies: Nucleus ---> e and Nucleus'

a particular value Wolfgang Pauli, distressed at the crisis and unwilling to part with energy conservation – like Bohr suggested – 1930 made a bold proposal, in an off-hand way:

"

"I have come upon a desperate way out. To wit, the possibility that there could exist in the nucleus electrically neutral particles which I shall call neutrons... the mass... should not be larger than 0.01 times the proton...the ... beta [energy] would then be understandable from the assumption that...a [neutron] is emitted along with the electron... I admit that my way out may not seem very probable...But only he who dares wins

... unfortunately I cannot appear personally in Tubingen since a ball which takes place in Zurich makes my presence here indispensable.

Oops: James Chadwick called his new particle the "neutron" Enrico Fermi called Pauli's the *neutrino*...little neutron

and massless!

the idea hung around

the discovery of the neutron in 1932 gave Enrico Fermi an idea

The prediction of the **Neutrino** ...thought to be undiscoverable!

He suggested that a neutron turns into a proton during beta decay

Enrico Fermi 1901-1954 experimental & theoretical physicist! Nobel Laureate 1938

Probably 2, maybe 3 Nobel prize-worthy experiments. Probably 2, maybe 3 Nobel prize-worthy theoretical products. There will never be anyone like Enrico Fermi again.

Enrico Fermi 1901-1954 (actually in a cafeteria in Ann Arbor, 1935)

Enrico Fermi

Nobel 1938

not for beta decay

for bombarding nuclei with neutrons and causing fission

Nobelprize.org

The Official Web Site of the Nobel Prize

Nobel Prizes

Alfred Nobel

Educational

Home / Nobel Prizes / Nobel Prize in Physics / The Nobel Prize in Physics 1938

About the Nobel Prizes

Facts and Lists

Nobel Prize in Physics

All Nobel Prizes in Physics

Facts on the Nobel Prize in Physics

Prize Awarder for the Nobel Prize in Physics

Nomination and Selection of Physics Laureates

Nobel Medal for Physics

Articles in Physics

Video Interviews

Video Nobel Lectures

Nobel Prize in Chemistry

Nobel Prize in Physiology or Medicine

Nobel Prize in Literature

Nobel Peace Prize

Prize in Economic Sciences

📥 Printe 1901 Sort and list Nobel Prizes and

The Nobel Prize in Physics 193

Nobel Prize Award Ceremony

Enrico Fermi

Enrico Fermi

The Nobel Prize in Physics 1938 was awarded to Enrico Fermi "for his demonstrations of the existence of new radioactive elements produced by neutron irradiation, and for his related discovery of nuclear reactions brought about by slow neutrons".

Photos: Copyright © The Nobel Foundation

Nobel Laureates Have Their Say Ceremonies

		Home A
Video Player	Nobel Organizati	ions
er Friendly 🛛 🕀 Share 🗎	🖂 Tell a Friend	Q Comments
	2012	1938
Nobel Laur	Prize catego	ry: Physics 🛊
in Physics 1938		
38		T
		T
		T
1029 was swarded to F	Enrico Formi "fo	r hio

Fermi Theory of Beta Decay

uses the Dirac ideas of quantum electrodynamics

particle creation and annihilation

m_{neutron} > m_{proton} a smidgen.

a free neutron has a lifetime of about 11 minutes. He sent the paper to *Nature*, but it was rejected:

"it contained speculations which were too remote from reality"

from his original paper for different nuclear species parameters

52

discovery of the neutrino

took 25 years

experimental tour de-force

lightyears of lead to stop one!

Neutrinos very weakly interact in matter

exchange force

the modern view:

if there's a force...there's a field

if there's a field...there's a particle

eld ticle

in 1932 Heisenberg had good idea: the notion of an "Exchange Force" the simplest, but most important modeling suggestion ever

Heisenberg: "Hmm. Electrons spontaneously appear out of nuclei."

maybe they're in the nucleus all the time? maybe they're even holding it together?

Exchange Force

The proton is playing catch with itself

with all he knew about: electrons and protons

maybe beta decay?

He knew that sometimes nuclei just spit out an electron. Rutherford's beta decay

P

D

analogy: a repulsive exchange force

a repulsive exchange force

58

analogy: an attractive exchange force

an attractive exchange force

59

jargon alert:	exchange force		
	refers to:	the idea that the fore the propagated by qua	
	entomology:	Heisenberg's pictu them	
	example:	the photon!	

orces of nature are anta

re of exchanging

piece the
primitives
together

sharing a leg

know We one force

electromagnetism

electricity

magnetism

united by Relativity

remember?

e

The modern idea:

The force of electromagnetism is "propagated" by the photon.

Multiple names: "propogator" "Intermediate Vector Boson"

I'll call the photon: the "Messenger Field for Electromagnetism"

There's something funny about the nucleus that it is.

charge independence

Heisenberg's original idea was before the neutron

his protons playing catch with electrons?

nope.

remember: chemistry from # protons = #electrons

to "assemble" ¹²C they have to attract one another NOT electromagnetism

remember: chemistry from # protons = #electrons

to "assemble" ¹²C

they have to attract one another

But how does it hold together?

why does any nucleus beyond Hydrogen hang together? those protons want to get away from one another the electrostatic force of repulsion Is countered...by an even stronger force

Strong Force

1934

Hideki Yukawa

Yukawa's force *finite* in extent

electromagnetic force infinite in extent

The Strong Force is a stronger than...<u>anything</u> in the universe. two competing forces:

Electromagnetic Force

Strong is stronger than...<u>anything</u>. two competing forces:

Electromagnetic Force

Strong is stronger than...<u>anything</u>. two competing forces:

Strong Force

Strong is stronger than...<u>anything</u>. two competing forces:

Strong Force

the STRONG force

overwhelms the electromagnetic force

but only over a very short range...

the STRONG force

overwhelms the electromagnetic force

but only over a very short range...

neutrons and protons

in the nucleus, the proton and neutron

are two manifestations of the same particle

whatever it is that holds the nucleus together: it's symmetric between the proton and the neutron

For all practical purposes – in holding the nucleus together – the neutron and proton are the same particle - the "Nucleon."

same force, same strength

If we ignore electromagnetism...the proton & the neutron are very much alike - we can treat them as being the same particle

neutrons and protons

act like they are identical particles

the electric charge?

as a force...Yukawa's force is 100 times the electromagnetic

For nuclear forces: treat p and n as identical and differing only by a "quantum number" called "Isospin"

A neutron... is a "nucleon" with "isospin down" is a "nucleon" with "isospin up" A proton...

They go together...within the strong, nuclear force.

How?

+ 1/2

- 1/2

jargon alert:nucleonrefers to:either a proton or a neutronentomology:from "nucleus"...the "-on" tends to be a
particle nameexample:"nucleon force"

jargon alert:	hadron	
	refers to:	any particle that Strong Force
	entomology:	αδρόσ "hadros" "I
	example:	proton and neutinot electron, not

interacts via the

arge", "massive"

ron *photon*

remember

Nature is clumpy

If there is a force...there's a field

If there's a field, there's a quantum to go with it.

The nuclear force is "active" over a short distance

~10⁻¹⁵ m

Yukawa knew that.

79

uncertainty certainly to the rescue

brilliant observation by Yukawa

maybe there's a quantum that is active only over the size of a nucleus: "U"

another exchange force/particle?

Suppose U travels at c within a nucleus... $\Delta t = \Delta x/c$

Then Uncertainty could estimate U's mass... $\Delta E \Delta t = h/4\pi$

$$m_{\scriptscriptstyle U} = \Delta E/c^2$$

 $m_U \approx 100 \times 10^6 eV = 100 MeV$

the most important thing in particle physics?

getting the name right.

the "U-kon"? thankfully, no.

the "meson?" Why yes, I think I like it.

medium mass...

not too big (proton) not too small (electron): just right.

the hunt was on

to find the Yukawa Particle

but WWII got in the way

Post-war emulsion exposures were startling

from Cecil Powell's Nobel lecture... a former student of?

...you guessed it.

many of these sort:

something unknown...

20,000 stereo photos --> 1600 usable tracks in 3 cm² plate

two discoveries

for the price of one

now called the "muon"

This took some unraveling.

μ

 ${\cal V}$

The "meson" appeared in and initiated nuclear collisions

The unknown particle seemed to live about a 6 μ sec too long to be a meson

The winning proposal:

now called the "pion"

 $\cdot \nu$

particle:	pion	
	symbol:	π
	charge:	+, -, 0
	mass:	139 MeV/c ² ,
	spin:	0
	category:	Boson, hadron, n

neson

an attractive exchange force

remember: chemistry from the **#** protons = **#**electrons

they have to attract one another

proton or neutron

the Yukawa particle

is the pion

These coupling strengths are large - strong.

In technical terms we call this...the strong interaction.

particle:	muon	
	symbol:	μ
	charge:	+, —
	mass:	105.7 MeV/c ²
	spin:	1/2
	category:	Fermion, lepton

particle: muon The smpl: Specific constraints of the second secon

category:

Fermion, lepton

Vier.

The Tau is exactly like an Electron just more spin: cate cate of the second second

there are as many neutrinos

as there are "electrons"

we got the original electron, we got an electron-neutrino

the muon, a muon neutrino

aaaand, another one: the tau and its neutrino

94

particle:	muon-neutrino			
	symbol:	${\cal V}_{\mu}$		
	charge:	0		
	mass:	0 or 0.4-ish to 1-i		
	spin:	1/2		
	category:	Fermion, lepton		

ish eV/c²

particle:	tau-neutrino			
	symbol:	${\cal V}_{{\cal T}}$		
	charge:	0		
	mass:	0 or 0.4-ish to 1-i		
	spin:	1/2		
	category:	Fermion, lepton		

ish eV/c²

FAMILIES

Nature prefers

like-particles

Lepton Families

electrons and a neutrino

muons and a neutrino

taus and a neutrino

These sorts of patterns are a huge deal.

Identical in every way...except mass

$$m_e \sim \frac{1}{1835} \times m_p$$
$$m_\mu \sim 10\% \times m_p$$

 $m_{\tau} \sim 1.8 \times m_p \parallel$

jargon alert:	lepton	
	refers to:	originally, an elec neutrino
	entomology:	"λεπτός" (leptos)
	example:	electron, muon,

ctron, muon,

), "fine, small, thin" neutrino, tau!

back to the 1940s

100

cosmic rays continue to surprise **Cloud chamber...w**ith Pb sheet 1946

Manchester University academic home for many years of...? who else.

Mysterious "Vees" began to crop up...

"Vee" $\rightarrow \pi^+ + \pi^-$ "Vee" $\rightarrow \mu + \nu$?

 π

 π $K^0 \to \pi^+ + \pi^-$

101

dubbed "Kaons"...they were

 $K^{\pm} \to \mu^{\pm} + \nu$

particle:	Kaon	
	symbol:	K
	charge:	±1, 0
	mass:	493.677 (charged
	spin:	0
	category:	Fermion, baryon,

d state) MeV/c²

$I = \pm 1/2, B=1, S=-3$

the at Bevatron

"cosmic ray" events could be manufactured on earth

at will.

Without knowing details, we can decipher a lot:

a beam of negative pions at the Bevatron

- 1. the direction of the field is such that negatives curve left
- 2. there are two neutral particles produced at A...which decay at B and C
- 3. @B: the almost 90 degree opening angle decay products are the same mass
- 3. @A: the positive track is a proton (bubble density at end), other a pion

$$\pi^{-}$$

103

yes, more strange particles

$$\Lambda \to p + \pi^-$$
 64% $\Lambda \to n + \pi^0$ 36%

"Lambdas" "Sigmas" "Cascades"

"K-stars"

particle:	Lambda	
	symbol:	Λ
	charge:	0
	mass:	1,115.683 MeV/c ²
	spin:	1/2
	category:	Fermion, baryon,

I = 0, B=1, S=-1

**** *** ** ** ** ** * * * * * * * * *) 1/ 0) 1/ 1/ 0) 1/ 1/ 0) 1/ 1/ 0) 1/ 1/ 0) 1/ 1/ 0) 1/ 0) 0/ (C = ±1) 1/ 0) 0/ 0 (1/ 1/ 0) 0/ 0 (1/ 1/ 0) 0/ 0 (1/ 1/ 0) 0/ 0 (1/ 1/ 0) 0/ 0 (1/ 1/ 0) 0/ 0 (1/ 1/ 0) 0/ 0 (1/ 0) 0
$P_{11} * P_{13} * P$	$\begin{array}{c} & \kappa(1630\\ & \kappa_1(165\\ & \kappa^*(168)\\ & \kappa_2(177\\ & \kappa_2(178\\ & \kappa_2(198\\ & \kappa_1(198\\ & \kappa_1(198\\ & \kappa_1(198\\ & \kappa_1(204\\ & \kappa_2(225\\ & \kappa_1(204\\ & \kappa_2(225\\ & \kappa_1(204\\ & \kappa_2(225\\ & \kappa_1(204\\ & \kappa_$
$\begin{array}{c c} & = & = \\ & = & = \\ & = & = \\ & = & (1530) \\ & = & (1620) \\ & = & (1620) \\ & = & (1820) \\ & = & (2120) \\ & = & (2250)$	$\begin{array}{c} 0 \cdot (2 + + + \\ 0 + (2 + + + \\ 1 + (3 \\ 0 + (2 + + + \\ 0 + (0 + + + \\ 1 - (4 + + + \\ - 8 + (4 + + + \\ - 8 + (4 + + + \\ - 8 + (4 + + + \\ - 1 + (4 + + + \\ 0 + (2 + + + \\ - 1 + (4 + + + \\ 0 + (2 + + + \\ - 1 + (4 + + + \\ 0 + (2 + + + \\ - 1 + (4 + + \\ - 1 + \\ - 1 + (4 + + \\ - 1 + (4 + + \\ - 1 + \\ - 1 + (4 + + \\ - 1 + \\ - 1 + (4 + + \\ - 1 + \\ - 1 + (4 + + \\ - 1 + \\ - 1 + (4 + + \\ - 1 + \\ - 1 + \\ - 1 + (4 + + \\ - 1 + \\ - 1 + \\ - 1 + (4 + + \\ - 1 + \\ -$
$\begin{array}{c} P_{11} \\ P_{11} \\ P_{11} \\ P_{13} \\ P_{11} \\ P_{13} \\ P_{13$	f2(1910) f2(1910) f3(1990) f2(2010) f2(2010) f2(2010) f2(2010) f2(2100) f2(2100) f2(2100) f2(2100) f2(2100) f2(2100) f2(2100) f2(2100) f2(220) f2(230) f2(250) f2(250) f2(250) f2(170) f2(1820) f2(1820) f2(1820) f2(1820) f2(230) f2(230) f2(230) f2(230) f2(230) f2(2400) f2(2400) f2(2400) f2(2400) f2(2400) f2(2400) f2(2400)
$\begin{array}{c} 11 & **** & \Sigma^+ \\ 11 & **** & \Sigma^0 \\ 13 & **** & \Sigma^{(1)} \\ 11 & *** & \Sigma^{(1)} \\ 11 & *** & \Sigma^{(1)} \\ 13 & *** & \Sigma^{(1)} \\ 13 & *** & \Sigma^{(1)} \\ 14 & *** & \Sigma^{(1)} \\ 15 & **** & \Sigma^{(1)} \\ 15 & **** & \Sigma^{(1)} \\ 16 & * & \Sigma^{(1)} \\ 17 & * & \Sigma^{(1)} \\ 18 & & \Sigma^{(1)} \\ $	$ \begin{array}{c} u_{+}^{+}(2++) \\ u_{+}^{+}(1++) \\ u_{+}^{+}(0-+) \\ 1+(0-+) \\ 1+(1-+) \\ u_{+}^{+}(1++) \\ 1+(1++) \\ 0+(1++) \\ 1+(1++) \\ $
$\begin{array}{c c} A \\ A(1405) \\ A(1520) \\ A(1600) \\ A(1670) \\ A(1690) \\ A(1810) \\ A(1810) \\ A(1820) \\ A(1830) \\ A(1830) \\ A(1830) \\ A(2020) \\ A(2020) \\ A(2020) \\ A(2020) \\ A(2100) \\ A(2020) \\ A(2585) \\ \hline \\ B(2) \\ A(2350) \\ A($	$f_2(1270)$ $f_2(1285)$ $\eta(1295)$ $\pi(1300)$ $\pi_2(1301)$ $\pi_2(1301)$ $\pi_2(1302)$ $\pi_1(1400)$ $\eta(1405)$ $\bullet, f_1(1420)$ $\bullet, f_2(1420)$ $\bullet, f_2(1420)$ $\bullet, f_2(1420)$ $\bullet, f_2(1420)$ $\bullet, f_2(1420)$ $\bullet, f_2(1500)$ $\bullet, f_2(1505)$ $\bullet, f_1(1595)$ $\bullet, f_1(1595)$ $\bullet, f_1(1595)$ $\bullet, f_2(1565)$ $\bullet, f_1(1595)$ $\bullet, f_2(1565)$ $\bullet, f_1(1595)$ $\bullet, f_2(1645)$ $\bullet, f_2(1645)$ $\bullet, f_2(1645)$ $\bullet, f_2(1645)$ $\bullet, f_2(1645)$ $\bullet, f_2(1600)$ $f_2(2100)$ $f_2(2100)$ $f_2(2100)$ $f_2(2100)$ $f_2(2100)$ $f_2(2100)$ $f_2(2100)$ $f_2(2100)$ $f_2(2100)$ $f_2(2100)$ $f_2(2100)$ $f_2(2100)$ $f_3(2100)$ $f_4(2100)$ $f_2(2100)$ $f_2(2100)$ $f_3(2100)$ $f_4(2100)$ $f_2(2100)$ $f_4(2100)$ $f_2(2100)$ $f_3(2100)$ $f_4(2100)$ $f_4(2100)$ $f_4(2100)$ $f_4(2100)$ $f_4(2100)$ $f_4(2100)$ $f_4(2100)$ $f_4(2100)$ $f_4(2100)$ $f_4(2100)$ $f_4(2100)$ $f_4(2100)$ $f_4(2100)$ $f_4(2100)$ $f_4(2100)$ $f_4(2100)$ $f_4(2100)$ $f_5(2100)$ $f_4(2100)$ $f_5(2100)$ $f_4(2100)$ $f_5(21$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2 \\ (3) \\ (S) \\ ($
$\begin{array}{c} \Delta(1232)\\ \Delta(1600)\\ \Delta(1620)\\ \Delta(1750)\\ \Delta(1900)\\ \Delta(1900)\\ \Delta(1900)\\ \Delta(1900)\\ \Delta(1910)\\ \Delta(1930)\\ \Delta(1940)\\ \Delta(1930)\\ \Delta(2000)\\ \Delta(2200)\\ \Delta(200)\\ \Delta(20)$	63 (355) (30) (20) (170) (225) (260) (270) (170) (225) (260) (170) (225) (260) (170) (255) (320) (170) (320) (350) (355) (3645) (1640) (1645) (1650) (1670) (1670)
$\begin{array}{c} P_{11} & ****\\ P_{11} & ****\\ P_{11} & ****\\ D_{13} & ****\\ S_{11} & ****\\ D_{13} & ****\\ S_{11} & ****\\ P_{13} & ***\\ P_{13} & **\\ P_{14} & **\\ P_{13} & **\\ P_{14} & **\\ P_{15} & **\\ P_{14} & **\\ P_{14} & **\\ P_{14} & **\\ P_{14} & **\\ P_{15} & **\\ P_{14} & **\\ P_{15} & **\\ P_{14} & **\\ P_{14} & **\\ P_{15} & **\\ P_{14} & **\\ P_{15} & **\\ P_{14} & **\\ P_{14$	$\begin{array}{c} (0 - +) \\ (1) \\ (2 + +) \\ (0 - +) \\ (1) \\$
$\begin{array}{c} \rho \\ n \\ N(1440) \\ N(1520) \\ N(1535) \\ N(1650) \\ N(1675) \\ N(1680) \\ N(1700) \\ N(2000) \\ N(2000) \\ N(2000) \\ N(2000) \\ N(2000) \\ N(2200) \\ N(200) \\ N(2$) 0^+ (S) 0^- (P) 0^+ (P) 0^+ (P) 0^+ (P) 0^- (O) 0^- (C) 0^- (
$\begin{array}{c} \ast\ast\ast\ast\ast & \Delta(\\ \ast\ast\ast\ast & \Delta(\\ \ast\ast\ast\ast\ast & \Delta(\\ \ast\ast\ast\ast\ast & \Delta(\\ \ast\ast\ast\ast & \Delta(\\ \ast\ast\ast & \Delta(\\ \ast\ast & \Delta(\\ \ast\ast\ast & \Delta(\\ \ast\ast\ast & \Delta(\\ \ast\ast & \Delta(\\ \ast\ast\ast & \Delta(\\ \ast\ast\ast & \Delta(\\ \ast\ast & \ast) & \Delta(\\ \ast\ast & \ast & \Delta(\\ \ast\ast & \ast & \Delta(\\ \ast\ast & \ast & \ast$	$ \begin{array}{c} & \eta_{c}(1) \\ & & J/\psi \\ & & J/\psi \\ & & \chi_{c0}() \\ & & \chi_{c1}() \\ & & \chi_{c2}() \\ & & \eta_{c}(2) \\ & & \psi(25) \\ &$
RANGE P_{I1}	$\begin{array}{c} 1/2(0) \\ 1/2(0) \\ 1/2(2) \\ 1/2(2) \\ 1/2(2) \\ 1/2(2) \\ 1/2(2) \\ 1/2(2) \\ 1/2(2) \\ 1/2(2) \\ 1/2(3) \\ 1/2(1) \\ 1/2(1) \\ 1/2(1) \\ 1/2(1) \\ 1/2(1) \\ 1/2(2$
P_{13} **** P_{13} *** D_{13} ** D_{13} **	$\begin{array}{c} K(1330)\\ K_{0}^{*}(1950)\\ K_{1}^{*}(1950)\\ K_{2}^{*}(1980)\\ 0\\ 2(22)\\ 0\\ (22)\\ 0\\ (22)\\ 0\\ (22)\\ 0\\ (22)\\ 0\\ (22)\\ 0\\ (22)\\ 0\\ (22)\\ 0\\ (22)\\ 0\\ (22)\\ 0\\ (22)\\ 0\\ (22)\\ 0\\ 0\\ (2400)^{0}\\ 0\\ 0\\ (2400)^{0}\\ 0\\ 0\\ (2400)^{0}\\ 0\\ 0\\ (2400)^{0}\\ 0\\ 0\\ (2400)^{0}\\ 0\\ 0\\ (2400)^{0}\\ 0\\ 0\\ 0\\ (2400)^{0}\\ 0\\ 0\\ 0\\ (2400)^{0}\\ 0\\ 0\\ 0\\ (2400)^{0}\\ 0\\ 0\\ 0\\ 0\\ (2400)^{0}\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
$\begin{array}{c} = (1530) \\ = (1620) \\ = (1620) \\ = (1620) \\ = (1620) \\ = (1620) \\ = (1620) \\ = (1620) \\ = (1620) \\ = (1620) \\ = (1620) \\ = (2120) \\ = (2120) \\ = (2120) \\ = (2120) \\ = (2250) \\ = (2$	$ \begin{array}{c} \text{IGE } 0 + (4 + +) \\ = B & 1 + (2 - +) \\ + (0 + (0 + +)) \\ + (2 + +) $
$\begin{array}{c} P_{11} \\ 385 \\ P_{13} \\ 480 \\ 560 \\ 560 \\ 580 \\ D_{13} \\ 620 \\ 581 \\ 660 \\ P_{11} \\ 880 \\ P_{11} \\ 915 \\ F_{15} \\ 880 \\ P_{13} \\ 880 \\ P_{11} \\ 915 \\ F_{15} \\ 940 \\ D_{13} \\ 880 \\ P_{11} \\ 915 \\ F_{15} \\ 600 \\ P_{13} \\ 880 \\ P_{11} \\ 915 \\ F_{15} \\ 600 \\ P_{13} \\ 880 \\ P_{11} \\ 915 \\ F_{15} \\ 600 \\ P_{13} \\ 880 \\ P_{11} \\ 915 \\ F_{15} \\ 600 \\ P_{13} \\ 880 \\ P_{11} \\ 915 \\ F_{15} \\ 600 \\ P_{13} \\ 880 \\ P_{11} \\ 915 \\ F_{15} \\ 600 \\ P_{13} \\ 600 \\ F_{17} \\ 600 \\ F_{1} $	• $f_{4}(2050)$ RA $\pi_{2}(2100)$ · $f_{6}(2100)$ • $f_{6}(2100)$ • $f_{6}(2100)$ • $f_{6}(2100)$ • $f_{6}(220)$ • $f_{7}(225)$ • $f_{7}(225)$ • $f_{7}(2250)$ • $f_{7}(2300)$ • $f_{7}(2300)$ • $f_{7}(2300)$ • $f_{7}(2300)$ • $f_{7}(2300)$ • $f_{7}(230)$ • $f_{7}(1850)$ • $f_{7}(2300)$ • $f_{7}(2300)$ • $f_{7}(2300)$ • $f_{7}(2300)$ • $f_{7}(2300)$ • $f_{7}(2300)$ • $f_{7}(2300)$ • $f_{7}(2300)$ • $f_{7}(2300)$ • $f_{7}(2007)^{0}$ • $D^{2}(2007)^{0}$ • $D^{2}(2007)^{0}$ • $D^{2}(2007)^{0}$ • $D^{2}(2460)^{0} - f_{7}(2300)$ • $f_{7}(2230)$ • $f_{7}(230)$ •
$\begin{array}{c} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 $	7-(1+-) 1-(1-+) 1-(1-+) 0+(0++) 1-(1-+) 0+(0++) 1+(1) 0+(0++) 1+(1) 0+(0++) 1+(1++) 0+(2++) 1-(1++) 0+(2++) 1-(1++) 0+(2++) 1-(1++) 0+(2++) 1+(1) 0+(0++) 1+(1) 0+(0++) 1+(2++) 1+(1) 0+(0++) 1+(2++) 0+(2++) 1+(1) 0+(0++) 1+(2++) 0+(2++) 1+(2++) 0+(2++) 1+(2++) 0+(2++) 1+(2++) 0+(2++) 1+(2++) 0+(2++) 1+(2++) 0+(2++) 1+(5) 1-(6++) 0+(2++) 1+(5) 1-(6++) 0+(6+-) 1+(5) 1-(6++) 0+(6+-) 1+(5) 1-(6++) 0+(6+-) 1+(5) 1-(6++) 0+(6+-) 1+(5) 1-(6++) 0+(6+-) 1-(6++) 0+(6+-) 1-(6+-)
$\Lambda(1520)$ D_1 $\Lambda(1600)$ P_i $\Lambda(1670)$ S_0 $\Lambda(1690)$ D_i $\Lambda(1800)$ S_0 $\Lambda(1810)$ P_i $\Lambda(1800)$ S_0 $\Lambda(1810)$ P_i $\Lambda(1830)$ D_i $\Lambda(1830)$ D_i $\Lambda(1830)$ D_i $\Lambda(1830)$ D_i $\Lambda(2000)$ $\Lambda(2000)$ $\Lambda(2000)$ P_i $\Lambda(2000)$ $\Lambda(2000)$ P_i $\Lambda(2325)$ D_i $\Lambda(2325)$	AVV $h_1(1380)$ • $\pi_1(1400)$ • $\pi_2(1450)$ • $\mu(450)$ • $\mu(450)$ • $\mu(1450)$ • $\mu(1450)$ • $\mu(1450)$ • $\pi_1(1510)$ • $f_5(1525)$ • $\mu(1525)$ • $\mu(1525)$ • $\mu(1670)$ • $\mu_2(1660)$ • $\mu_2(1660)$ • $\mu_2(1660)$ • $\mu_2(1670)$ • $\mu_2(160)$ • $\mu_2(160)$ • $\mu_2(160)$ • $\mu_2(160)$ • $\mu_2(160)$ • $\mu_2(100)$ • $\mu_2(150)$ $\mu_2(150)$ $\mu_2(250)$ $\mu_3(2450)$ • $\mu_3(2450)$ • μ_3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} Light UNNER($ s = c + i$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$
$\begin{array}{c} \Delta(1620) \\ \Delta(1700) \\ \Delta(1700) \\ \Delta(1750) \\ \Delta(1900) \\ \Delta(1900) \\ \Delta(1910) \\ \Delta(1920) \\ \Delta(1930) \\ \Delta(1940) \\ \Delta(1950) \\ \Delta(1950) \\ \Delta(2000) \\ \Delta(2000) \\ \Delta(2300) \\ \Delta(2300) \\ \Delta(2300) \\ \Delta(2300) \\ \Delta(2300) \\ \Delta(2300) \\ \Delta(2420) \\ \Delta(2300) \\ \Delta(2420) \\ \Delta(2350) \\$	70) 58) 82) 588) 80) 588) 980) 500 1220) 523 2245) 525 300) 1225 320) 1320 1320) 1330 1400) 1440 4420) 4420 4420) 4420 4420) 4420 550) 510 1525 565 500) 510 1525 565 1540) 1640 1640) 1645 1640) 1645 1640 1645 1640 1645 1640 1645 1640 1645 1640 1645 1640 1645 1650 1640 16160 1645 1650 1640 16160 1645 1650 1640 1640 1640 1640 1640 1640 1640 1640 1640 1640 1640 1640 1640 1640 1640 1650 1640 1650 1640 </td
11 ************************************	
$ \begin{array}{c} & (1440) & F_1 \\ & (1520) & D_1 \\ & (1550) & S_1 \\ & (1650) & S_1 \\ & (1650) & S_1 \\ & (1675) & D_1 \\ & (1700) & D_2 \\ & (1710) & F_1 \\ & (1700) & D_1 \\ & (1700) & F_1 \\ & (1900) & F_1 \\ & (1900) & F_1 \\ & (1200) & F_1 $	• Xco(1P) • Xco(1P) • Xco(1P) • Xco(1P) • Xco(2P) • X(3872) • Xc2(2P) • X(3872) • Xc2(2P) • Y(3940) • (4160) • (4160) • (4160) • (10) • (10) • Xco(1P) • Xco(1P) • Xco(1P) • Xco(2P) • Xco(2P)
***** Δ ***** Δ **** Δ **** Δ **** Δ **** Δ **** Δ **** Δ **** Δ **** Δ (**** Δ **** Δ (**** Δ (**** Δ (**** Δ (**** Δ) **** Δ (**** Δ) (**** Δ) (*** Δ) (*** Δ) (*** Δ) (*** Δ) (*** Δ) (*** Δ) (** Δ)	1 1 <t< td=""></t<>
D_{13} *** P *** *** *** *** *** *** *** ***	$\begin{array}{c} \text{BOTTOM} \\ = (8 \pm \pm 1) \\ = (2 \pm 2) \\ \text{ADDECTORM} \\ = (2 \pm 2) \\ A$
$ \begin{array}{c} -(3690) \\ \hline =(1820) \\ \hline =(1950) \\ \hline =(2030) \\ \hline =(2120) \\ \hline =(2250) \hline =(2250) \\ \hline =(2250) \hline =(2250$	$ \begin{array}{c} & & & \\ & & & $
*** 13 *** 14 *** 13 **** 13 **** 14 **** 15 *** 15 **** 15 **** 15 **** 15 **** 15 **** 16 **** 17 **** 18 *** 19 *** 10 *** 17 **** ** * 17 **** 18 ** 19 * 10 0 11 * 12 * 13 ** 14 * 15 * 16 0 17 * * * 14 * 15 * 16 0 17 * 18 * 19 0	NNGE C = B = 0 $I(P^{P})$ $I(2(0^{+}))$ $I(2(0^{+}))$ $I(2(0^{+}))$ $I(2(1^{+}))$ $I(2(1^{+}))$ $I(2(1^{+}))$ $I(2(1^{+}))$ $I(2(1^{-}))$ $I(2(2^{-}))$ I(2
$\begin{split} & \sum_{i=1}^{2} (1+60) \\ & \sum_{i=1}^{2} (1+75) \\ & \sum_{i=1}^{2} (1+7$	$\begin{array}{c} \text{STRA}\\ (5 = \pm 1, 0) \\ (5 = $
$\begin{array}{c} S_{01} \\ D_{03} \\ S_{01} \\ S_{01} \\ S_{01} \\ * \\ S_{01} \\ * \\ F_{05} \\ * \\ P_{03} \\ * \\ P_{03} \\ * \\ F_{07} \\ F_{07} \\ * \\ F_{07} \\ F_{07}$	$p^{G}(p^{PC})$ $1^{-}(2^{-}+)$ $0^{-}(1^{-}-)$ $1^{+}(3^{-}-)$ $1^{+}(1^{-}-)$ $1^{-}(2^{+}+)$ $0^{+}(0^{+}+)$ $0^{+}(0^{+}+)$ $1^{-}(0^{-}+)$ $1^{-}(0^{-}+)$ $1^{-}(2^{-}+)$ $0^{+}(2^{+}+)$ $0^{+}(2^{+}+)$ $0^{+}(2^{+}+)$ $1^{+}(1^{-}-)$ $0^{+}(2^{+}+)$ $1^{+}(2^{-}+)$ $0^{+}(2^{+}+)$ $1^{+}(2^{-}+)$ $0^{+}(2^{+}+)$ $1^{-}(2^{+}+)$ $0^{+}(2^{+}+)$ $1^{-}(2^{-}+)$ $0^{+}(2^{+}+)$ $1^{+}(2^{-}-)$ $0^{+}(2^{+}+)$ $0^{+}(0^{+}+)$ $1^{+}(2^{-}-)$ $1^{+}(3^{-}-)$ $0^{+}(2^{+}+)$ $0^{+}(2^{+}+)$ $0^{+}(2^{+}+)$ $0^{+}(2^{+}+)$ $0^{+}(2^{+}+)$ $0^{+}(4^{+}+)$ $0^{+}(6^{+}+)$ $1^{I}(IGHT$
$\begin{array}{c} A_{(16)} \\ A_{(16)} \\ A_{(16)} \\ A_{(16)} \\ A_{(18)} \\ A_{(18)} \\ A_{(18)} \\ A_{(18)} \\ A_{(18)} \\ A_{(200)} \\ A_{(210)} \\ A_{(200)} \\ A_{(210)} \\ A_{(225)} \\ A_{(225)} \\ A_{(235)} \\ A_{(235)$	FLAVORED + $B = 0$ • $\pi_2(1670)$ • $\phi(1680)$ • $p_3(1690)$ • $p_3(1690)$ • $f_0(1710)$ • $f_0(1710)$ • $f_0(1710)$ • $f_0(1800)$ • $f_0(1800)$ • $f_0(1800)$ • $f_0(1800)$ • $f_0(1800)$ • $f_0(1800)$ • $f_0(1800)$ • $f_0(1800)$ • $f_0(1900)$ • $f_0(200)$ • $f_0(200)$ • $f_0(200)$ • $f_0(200)$ • $f_0(2100)$ • $f_0(2100)$ • $f_0(2100)$ • $f_0(2100)$ • $f_0(2100)$ • $f_0(2100)$ • $f_0(2100)$ • $f_0(2100)$ • $f_0(2200)$ • $f_0(2200)$ • $f_0(2300)$ • $f_0(2300)$ • $f_0(2300)$ • $f_0(2350)$ • $g_0(2450)$ • $f_0(2510)$ • $f_0(2510)$ • $f_0(2510)$ • $f_0(2500)$ • $f_$
$\begin{array}{c} r_{50} & \rho_{31} \\ geod $	$\begin{array}{c} \text{LIGHT UNF}\\ (S=C+\\f^G(J^{PC})\\ \hline 1^{-}(0^{-})\\ 1^{-}(0^{-})\\ 0^{+}(0^{-}+)\\ 0^{+}(0^{+}+)\\ 1^{+}(1^{-}-)\\ 0^{-}(1^{-}-)\\ 0^{+}(0^{+}+)\\ 1^{-}(0^{+}+)\\ 0^{+}(0^{+}+)\\ 1^{-}(0^{+}+)\\ 0^{+}(0^{+}+)\\ 1^{-}(1^{+}+)\\ 0^{+}(2^{+}+)\\ 0^{+}(1^{+}+)\\ 0^{+}(2^{+}+)\\ 0^{+}(1^{+}+)\\ 0^{+}(2^{+}+)\\ 0^{+}(1^{+}+)\\ 0^{+}(1^{+}+)\\ 0^{+}(1^{+}+)\\ 0^{+}(1^{+}+)\\ 0^{+}(2^{+}+)\\ 0^{+}(1^{+}+)\\ 0^{+}(2^{+}+)\\ 0^{+}(2^{+}+)\\ 0^{+}(2^{+}+)\\ 0^{+}(2^{+}+)\\ 0^{+}(2^{+}+)\\ 0^{+}(2^{+}+)\\ 0^{-}(1^{-}-)\\ 0^{-}(3^{-}-)\\ \end{array}$
1 $\Delta(i)$ 1 **** $\Delta(i)$ 15 **** $\Delta(i)$ 5 **** $\Delta(i)$ 13 *** $\Delta(i)$ 13 *** $\Delta(i)$ 13 *** $\Delta(i)$ 14 * $\Delta(i)$ 15 *** $\Delta(i)$ 16 * $\Delta(i)$ 17 ** $\Delta(i)$ 18 * $\Delta(i)$ 19 **** $\Delta(i)$ 11 * $\Delta(i)$ 12 ** $\Delta(i)$ 13 ** $\Delta(i)$ 14 * $\Delta(i)$ 15 ** $\Delta(i)$ 16 ** $\Delta(i)$ 11 * $\Delta(i)$ 12 ** $\Delta(i)$ 13 ** $\Delta(i)$ 14 * $\Delta(i)$ 15 ** $\Delta(i)$ 16 ** $\Delta(i)$ 17 ** $\Delta(i)$ 18 <td>$\begin{array}{l} \pi^{\pm} \\ \pi^{0} \\ \eta \\ \hline \\ \eta \\ f_{0}(600) \\ \hline \\ \rho(770) \\ \hline \\ \omega(782) \\ \eta'(958) \\ f_{0}(980) \\ \hline \\ a_{0}(980) \\ \hline \\ a_{0}(980) \\ \hline \\ a_{1}(120) \\ \hline \\ h_{1}(1170) \\ \hline \\ h_{1}(1235) \\ \hline \\ a_{1}(1260) \\ \hline \\ f_{2}(1270) \\ \hline \\ h_{1}(1285) \\ \hline \\ \eta(1295) \\ \hline \\ \pi(1300) \\ \hline \\ a_{2}(1320) \\ \hline \\ h_{1}(1320) \\ \hline \\ h_{1}(1320) \\ \hline \\ \pi_{1}(1400) \\ \hline \\ \eta(1405) \\ \hline \\ h_{1}(1330) \\ \hline \\ a_{1}(1400) \\ \hline \\ \eta(1475) \\ \hline \\ h_{1}(1510) \\ \hline \\ h_{1}(1510) \\ \hline \\ h_{1}(1510) \\ \hline \\ h_{1}(1525) \\ \hline \\ h_{2}(1565) \\ \hline \\ h_{1}(1595) \\ \hline \\ \pi_{1}(1600) \\ \hline \\ a_{1}(1640) \\ \hline \\ h_{2}(1640) \\ \hline \\ \omega_{3}(1670) \\ \hline \end{array}$</td>	$\begin{array}{l} \pi^{\pm} \\ \pi^{0} \\ \eta \\ \hline \\ \eta \\ f_{0}(600) \\ \hline \\ \rho(770) \\ \hline \\ \omega(782) \\ \eta'(958) \\ f_{0}(980) \\ \hline \\ a_{0}(980) \\ \hline \\ a_{0}(980) \\ \hline \\ a_{1}(120) \\ \hline \\ h_{1}(1170) \\ \hline \\ h_{1}(1235) \\ \hline \\ a_{1}(1260) \\ \hline \\ f_{2}(1270) \\ \hline \\ h_{1}(1285) \\ \hline \\ \eta(1295) \\ \hline \\ \pi(1300) \\ \hline \\ a_{2}(1320) \\ \hline \\ h_{1}(1320) \\ \hline \\ h_{1}(1320) \\ \hline \\ \pi_{1}(1400) \\ \hline \\ \eta(1405) \\ \hline \\ h_{1}(1330) \\ \hline \\ a_{1}(1400) \\ \hline \\ \eta(1475) \\ \hline \\ h_{1}(1510) \\ \hline \\ h_{1}(1510) \\ \hline \\ h_{1}(1510) \\ \hline \\ h_{1}(1525) \\ \hline \\ h_{2}(1565) \\ \hline \\ h_{1}(1595) \\ \hline \\ \pi_{1}(1600) \\ \hline \\ a_{1}(1640) \\ \hline \\ h_{2}(1640) \\ \hline \\ \omega_{3}(1670) \\ \hline \end{array}$

By the mid-1950's

things are officially out of control.

107

by 1955

	N(1535)	S_{11}	****	$\Delta(1750)$	P
	N(1650)	S_{11}	****	$\Delta(1900)$	S_{2}
	N(1675)	D15	****	$\Delta(1905)$	F
	N(1680)	F15	****	∆(1910)	P
	N(1700)	D13	***	$\Delta(1920)$	P
	N(1710)	P_{11}	***	$\Delta(1930)$	D
	N(1720)	P_{13}	****	∆ (1940)	D
	N(1900)	P ₁₃	**	$\Delta(1950)$	F
	N(1990)	F ₁₇	**	$\Delta(2000)$	F
	N(2000)	F ₁₅	**	$\Delta(2150)$	S
	N(2080)	D13	**	$\Delta(2200)$	G
	N(2090)	S_{11}	*	$\Delta(2300)$	
	N(2100)	P_{11}	*	$\Delta(2350)$	
	N(2190)	G17	****	$\Delta(2390)$	
	N(2200)	D15	**	$\Delta(2400)$	
	N(2220)	H_{19}	****	$\Delta(2420)$	
	N(2250)	G_{19}	****	$\Delta(2750)$	
	N(2600)	1,11	***	$\Delta(2950)$	

**** *** ****

* ** **** ****

•••• •••• •

**** * * * * * * *

A(1405) A(1520) A(1600)

A(1670)

A(1690)

A(1800) A(1810) A(1820)

A(1830)

A(1890)

A(2000) A(2020) A(2100) A(2110)

A(2325) A(2350) A(2585)

 P_{01} S_{01} P_{01} S_{01} S_{01} P_{01} F_{05} D_{05}

 P_{03}

F₀₇ G₀₇ F₀₅ D₀₃ H₀₉

**** *** * *** *

 Σ(1620)

 Σ(1660)

 Σ(1670)

 Σ(1670)

 *
 Σ(1750)

 *
 Σ(1770)

 *
 Σ(1770)

Σ(1775)

 $\Sigma(1840)$ $\Sigma(1880)$ $\Sigma(1915)$ $\Sigma(1940)$

 P_{33} P_{33} S_{31} P_{31} S_{31} F_{35} P_{33} D_{35} D_{33} F_{35} F_{35} F_{31} D_{35} S_{31} F_{35} F_{37} F_{3

**

**

**

** * *

 P_{11}

 P_{11}

P₁₁ D₁₃ S₁₁

 S_{11}

 D_{15}

F₁₅ D₁₃ P₁₁

 P_{13}

 P_{13}

F₁₇ F₁₅

D13

 S_{11}

 P_{11}

G17

V(2700) K_{1.13} **

N(1440)

N(1520)

N(1535)

N(1650)

N(1675) N(1680)

N(1700)

N(1710)

N(1720)

N(1900)

N(1990)

N(2000)

N(2080)

N(2090)

N(2100) N(2190)

∆(1232)

 $\Delta(1600)$

 $\Delta(1620)$

 $\Delta(1700)$

∆(1750)

 $\Delta(1900)$

 $\Delta(1905)$

∆(1910)

 $\Delta(1920)$

 $\Delta(1930)$

∆(1940)

∆(1950)

 $\Delta(2000)$ $\Delta(2150)$ $\Delta(2200)$

∆(2300)

 $\Delta(2350)$

∆(2390)

350) 390) 400) 420) 750) 950) ** ** ** **	1	00)'s	of	t
**					

**

**** *** ** **

.

 D_{13} S_{11} P_{11} D_{13} S_{11} P_{11} D_{15} P_{13}

 $\Xi(1690)$

 $\Xi(1820)$

Ξ(1950)

Ξ(2030)

 $\Xi(2120)$ $\Xi(2250)$ $\Xi(2370)$

Ξ(2500)

 $\Omega(2250)^{-1}$

 Ω^{-}

 $I^{G}(J^{PC}$

 $1^{-}(2^{-})$ $0^{-}(1^{-})$

 $1^{+}(3^{-})$ $1^{+}(1^{-})$ $1^{-}(2^{+})$ $0^{+}(0^{+})$ $0^{+}(0^{-})$

 D_{13}

*** *** * ** ** *

N(1700)

N(1710)

N(1720)

N(1900)

N(1990)

N(2000)

N(2080)

N(2090)

N(2100) N(2190) N(2200)

 D_{13}

 P_{11} P_{13} P_{13} F_{17} F_{15} D_{13} S_{11} P_{11} G_{17}

 D_{15}

*** *** ** ** ** ** ** *

**

 $\eta_b(1S)$ • T(1S)

χ_{b0}(1P)

χ_{b1}(1P)

T(25)

T(1D)

χ_{b0}(2P)

χ_{b1}(2P)
 χ_{b2}(2P)

Υ(35)

T(45)

T(10860)

r(11020)

NON-qq CA

N(1440) N(1520) N(1535)

N(1650)

N(1675)

N(1680)

N(1700) N(1710)

N(1720) N(1900)

N(1990)

 F_{01}^{01} S_{01}^{03} S_{01}^{01} F_{05}^{05} P_{03}^{03}

F₀₇ G₀₇ F₀₅

r 01

 $\Sigma(1480)$

 Σ (1480)

 Σ (1560)

 Σ (1580)

 Σ (1620)

 Σ (1660)

 Σ (1660)

 Σ (1670)

 Σ (1690)

 *
 Σ (1360)

* $\Sigma(1750)$ * $\Sigma(1770)$ **** $\Sigma(1775)$ **** $\Sigma(1775)$

A(1670) A(1690) A(1800)

A(1810)

A(1820) A(1830) A(1890) A(2000)

A(2020) A(2100) A(2110)

888

E(2250)

E(2370)

Ξ(2500)

Ω(2250)⁻ Ω(2380)⁻

Ω(2470)

**** ** * * * * * * * *

 D_{13}

S₁₁ P₁₁ D₁₅ P₁₃ P₁₁ F₁₅ D₁₃

**

**** *** * * * * * * *

things wer meschat's so

"		er		e		a	ry	
• π^{\pm} • π^{0} • η	$1^{-}(0^{-})$ $1^{-}(0^{-}+)$ $0^{+}(0^{-}+)$	 π₂(1670) φ(1680) ρ₃(1690) 	$1^{-}(2^{-}+)$ $0^{-}(1^{-}-)$ $1^{+}(3^{-}-)$	• K [±] • K ⁰ • K ⁰ ₅	$\frac{1/2(0^{-})}{1/2(0^{-})}$ $\frac{1}{2(0^{-})}$			

 ω(782) 	$0^{-}(1^{-})$	 f₀(1710) 	$0^{+}(0^{+}+)$	• K*(892)	1/2(1-)	V _{cb} and V _{ub} C	
 η'(958) 	$0^+(0^-+)$	7(1760)	$0^{+}(0^{-}+)$	• K ₁ (1270)	1/2(1+)	- B*	1/2(1-)
 f₀(980) 	$0^+(0^++)$	 π(1800) 	$1^{-(0^{-+})}$	• K ₁ (1400)	1/2(1+)	R*(5732)	2(2?)
 a₀(980) 	$1^{-}(0^{+}+)$	5 (1810)	$0^+(2^++)$	• K*(1410)	1/2(1-)	0 (01 02)	
 \$\phi(1020)\$ 	$0^{-(1)}$	X(1835)	$?^{?}(2 - +)'$	• K:(1430)	1/2(0+)	BOTTOM,	STRANGE
 h₁(1170) 	$0^{-(1^{+}-)}$	 	$0^{-}(3^{-}-)$	K*(1430)	1/2(2+)	$(B = \pm 1,$	$S = \mp 1$
 b₁(1235) 	1+(1+-)	$\eta_2(1870)$	$0^+(2^{-+})$	K(1460)	1/2(0-)	 B⁰ 	0(0-)
 a) (1260) 	$1^{-}(1^{+})$	a(1900)	1+(1)	A (1460)	1/2(0)	B.	0(1-)
 £(1270) 	$0^+(2^+)$	6(1910)	$0^+(2^++)$	N2(1580)	1/2(2)	B* (5850)	2(2?)
 6 (1285) 	$0^{+}(1^{+}+)$	• fs(1950)	$0^{+}(2^{+}+)$	K (1630)	1/2(1-)	D _s j(0000)	-(-)
n(1295)	$0^{+}(0^{-}+)$	(1990)	$1^{+}(3^{-})$	A1(1650)	1/2(1 ·)	BOTTOM,	CHARMED
 π(1300) 	1-(0-+)	• f (2010)	$n^{+}(2^{+}+1)$	• K (1680)	1/2(1)	(B = C	$= \pm 1$)
 a (1320) 	1-(2++)	6(2020)	$0^{+}(0^{+}+)$	 K₂(1770) K₂(1770) 	1/2(2-)	 B[±]_c 	0(0-)
• £(1370)	$0^{+}(0^{+}+)$	a (2040)	$1^{-(4^{++})}$	 K[*]₃(1780) 	1/2(3)	· ·	,
b. (1380)	$\frac{2}{2}(1+-)$	• £(2050)	$0^{+}(4^{+}+1)$	 K₂(1820) 	1/2(2-)	cc	5
 π₁(1400) 	1-(1-+)	Ta(2100)	1-(2-+)	K(1830)	1/2(0)	• $\eta_c(1S)$	0+(0-+)
 n(1405) 	$a^+(a^-+)$	6(2100)	$n^{+}(n^{+}+)$	$K_0^*(1950)$	1/2(0+)	 J/ψ(15) 	0-(1)
• 6 (1420)	$0^+(1^+)$	6(2150)	$0^+(2^++)$	$K_{2}^{*}(1980)$	$1/2(2^+)$	 χ_{c0}(1P) 	$0^{+}(0^{+}+)$
• vi(1420)	$0^{-}(1^{-})$	(2150)	$1^{+}(1^{-})$	 K[*]₄(2045) 	$1/2(4^+)$	 χ_{c1}(1P) 	$0^{+}(1^{++})$
• $\omega(1420)$ • $\epsilon(1430)$	$0^+(2^++)$	p(2150) 6(2200)	$a^+(a^++)$	$K_2(2250)$	$1/2(2^{-})$	$h_c(1P)$? [?] (? ^{??})
2(1450) 2(1450)	1-(0++)	f ₀ (2200)	$0^{+}(2 \text{ or } 4^{+} + 1)$	$K_3(2320)$	$1/2(3^{+})$	 χ_{c2}(1P) 	$0^{+}(2^{++})$
• a0(1450)	$1^{+}(1^{-})$	-(2226)	$0^{+}(0^{-}+)$	$K_{5}^{*}(2380)$	$1/2(5^{-})$	 η_c(2S) 	0+(0-+)
• $p(1450)$	$a^{+}(a^{-}+)$	$\eta(2225)$	1+(2)	$K_4(2500)$	$1/2(4^{-})$	 ψ(25) 	0-(1)
 η(1475) €(1500) 	$0^+(0^++)$	$p_3(2250)$	$0^+(2^++)$	K(3100)	? [?] (? ^{??})	 ψ(3770) 	$0^{-}(1^{-})$
 /0(1500) (1510) 	$a^{+}(1 + +)$	• I2(2300) • (2200)	$0^{+}(2^{+})$	CUAR		 X(3872) 	0 [?] (? ^{?+})
/1(1510) - f/(1525)	$a^{+}(2^{+}^{+})$	f4(2300)	$0^+(2^++)$	CHARMED		 χ_{c2}(2P) 	$0^{+}(2^{++})$
• / 2(1525) • (1565)	$a^{+}(2^{+})$	• /2(2340)	1+(5)	(0 =	±1)	Y(3940)	??(???)
/2(1505) h (1505)	$0^{-(2++)}$	$p_5(2350)$	1 - (c + +)	• D [±]	1/2(0-)	 ψ(4040) 	$0^{-}(1^{-})$
n1(1595)	0(1 +)	a ₆ (2450)	$0^+(6^+)$	• D ⁰	$1/2(0^{-})$	 ψ(4160) 	$0^{-}(1^{-})$
 π₁(1600) (1640) 	1(1 + 1)	<i>I</i> ₆ (2510)	0.(0)	 D*(2007)⁰ 	$1/2(1^{-})$	Y(4260)	??(1)
a1(1640)	(1 + 1)	OTH	ER LIGHT	 D[*](2010)[±] 	$1/2(1^{-})$	 ψ(4415) 	$0^{-}(1^{-})$
r2(1640)	$0^{+}(2^{-})$	Eurther Sta	ites	$D_0^*(2400)^0$	$1/2(0^+)$		
 η₂(1645) 	0 (2)			$D_0^*(2400)^{\pm}$	$1/2(0^{+})$	bi	b
 ω(1650) (* (70)) 	0 (1)			 D₁(2420)⁰ 	$1/2(1^+)$	$\eta_b(1S)$	0+(0-+)
• $\omega_3(1670)$	0 (3)			$D_1(2420)^{\pm}$	1/2(?*)	 T(15) 	0-(1)
				$D_1(2430)^0$	$1/2(1^+)$	 χ_{b0}(1P) 	$0^{+}(0^{+})$
				 D[*]₂(2460)⁰ 	$1/2(2^+)$	 χ_{b1}(1P) 	$0^{+}(1^{++})$
				 D[*]₂(2460)[±] 	$1/2(2^+)$	 χ_{b2}(1P) 	$0^{+}(2^{++})$
				$D^{*}(2640)^{\pm}$	1/2(??)	 <i>T</i>(25) 	$0^{-}(1^{-})$
				CULEUEE	CTRANCE	T(1D)	0-(2)
				CHARMED, STRANGE		 χ_{b0}(2P) 	$0^{+}(0^{+}+)$
				(c = 3	- ±1)	 χ_{b1}(2P) 	$0^{+}(1^{++})$
				• D ₅ [±]	0(0-)	 χ_{b2}(2P) 	$0^{+}(2^{++})$
				 D^{*±}_s 	0(?')	 <i>\(\Text{35}\)</i> 	$0^{-}(1^{-})$
				 D[*]_{\$0}(2317)[±] 	$0(0^{+})$	 <i>T</i>(45) 	0-(1)
				 D_{s1}(2460)[±] 	$0(1^+)$	 \$\mathcal{T}\$(10860) 	0-(1)
				 D_{s1}(2536)[±] 	0(1+)	 <i>γ</i>(11020) 	$0^{-}(1^{-})$
				m (news)	7.	1 1 1	

$\begin{array}{c} P_{11} \\ P_{12} \\ P_{13} \\ P_{13} \\ P_{13} \\ P_{17} \end{array}$	$\begin{array}{c} \Delta(1600) \\ \bullet \\ \Delta(1620) \\ \bullet \\ \Delta(1700) \\ \bullet \\ \Delta(1900) \\ \bullet \\ \Delta(1900) \\ \bullet \\ \Delta(1910) \\$	P_{33}	A(1405) 501 A(1520) D01 A(1600) P01 A(1670) S01 A(1690) D03 A(1810) P01 A(1820) F05 A(1830) D03 A(2000) A(2020) F07	***** Σ **** Σ *** Σ *** Σ *** Σ *** Σ * Σ * Σ * Σ * Σ * Σ * Σ * Σ * Σ * Σ × Σ × Σ × Σ × Σ × Σ × Σ × Σ × Σ × Σ × Σ × Σ × Σ × Σ × Σ × Σ × Σ × Σ <	$\begin{array}{cccc} & \rho_{11} \\ \rho_{11} & \rho_{13} \\ $	$\begin{array}{c} = \\ = \\ = \\ = \\ = \\ = \\ = \\ = \\ = \\ = $	P_{11} **** P_{13} **** P_{13} **** P_{13} **** P_{13} **** P_{13} **** P_{13} **** P_{13} **** P_{13} **** P_{13} *** P_{13} ** P_{13} **	e	
				LIGHT U (S = $I^{G}(I^{PC})$	C = B = 0	IG (IPC)	STR (5 = ±1,	ANGE C = B = 0 $I(P^{P})$	BC
			• π^{\pm} • π^{0} • η • $f_{0}(600)$ • $\rho(770)$	$1^{-}(0^{-})$ $1^{-}(0^{-}+)$ $0^{+}(0^{-}+)$ $0^{+}(0^{+}+)$ $1^{+}(1^{-}-)$	• $\pi_2(1670)$ • $\phi(1680)$ • $\rho_3(1690)$ • $\rho(1700)$ • $\phi_2(1700)$	$1^{-}(2^{-})$ $0^{-}(1^{-})$ $1^{+}(3^{-})$ $1^{+}(1^{-})$ $1^{-}(2^{+})$	+) • K [±] -) • K ⁰ -) • K ⁰ ₅ -) • K ⁰ ₂ +) Κ [*] ₂ (800)	1/2(0) 1/2(0) 1/2(0) 1/2(0) 1/2(0 ⁺)	• B [±] • B ⁰ • B [±] /B ⁰ AD • B [±] /B ⁰ /B ⁰ MIXTURE
3,11 *** ,13 ** 3,15 ** *			• ω (782) • η' (958) • f_0 (980) • ∂_0 (980) • ϕ (1020) • h_1 (1170)	$\begin{array}{c} 0^{-}(1 \\ 0^{+}(0 - + \\ 0^{+}(0 + + \\ 1^{-}(0 + + \\ 0^{-}(1 \\ 0^{-}(1 + - \\ 0^{-}(1 +$) • $f_0(1710)$ $\eta(1760)$) • $\pi(1800)$) $f_2(1810)$) $X(1835)$) • $\phi_3(1850)$	$0^{+}(0^{+})^{+}(0^{-})^{-}(0^{-})^{-}(0^{-})^{-}(0^{+})^{-}(0^{$	$ \begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + $	$\begin{array}{c} 1/2(1^{-})\\ 1/2(1^{+})\\ 1/2(1^{+})\\ 1/2(1^{-})\\ 1/2(0^{+})\\ 1/2(2^{+}) \end{array}$	V_{cb} and V_{t} Elements • B^* $B_J^*(5732)$ BOTTO ($B = 1$
			• $b_1(125)$ • $a_1(1260)$ • $f_2(1270)$ • $f_1(1285)$ • $\eta(1295)$ • $\pi(1300)$ • $a_2(1^{2n}9)$	$\begin{array}{c} 1 & (1 + 1) \\ 1 - (1 + 1) \\ 0 + (2 + 1) \\ 0 + (1 + 1) \\ 0 + (0 - 1) \\ 1 - (0 - 1) \\ 1 - (2 + 1) \end{array}$) $\eta_2(1870)$ $\rho(1900)$ $f_2(1910)$) $f_2(1910)$) $f_2(1950)$ $\rho_7(1990)$ • f_2 010) f_0 020	$ \begin{array}{c} 0^{+}(2) \\ 1^{+}(1 - 2) \\ 0^{+}(2 + 2) \\ 1^{+}(3 - 2) \\ 0^{+}(2 + 2) \\ 0^$	$\begin{array}{c} \cdot) & K(1460) \\ \hline & \\ -) & K_2(1580) \\ +) & K(1630) \\ +) & K_1(1650) \\ \hline & \\ -) & \bullet & K^*(1650) \\ \bullet & K_2(2170) \\ +) & &$	$1/2(0^{-})$ $1/2(2^{-})$ $1/2(?^{7})$ $1/2(1^{+})$ $1/2(1^{-})$ $1/2(2^{-})$ $1/2(2^{-})$	• B_{5}^{\pm} B_{s}^{\pm} $B_{sJ}^{\pm}(5850)$ BOTTO (B = 10) (B = 10)
C		LIGHT (5) 1-(0-) 0+(0-)	$ \begin{array}{c} f_0(13 \)) \\ h_1(1 \)) \\ \pi_1(2 \)) \\ \hline \\ f_1(1420) \\ \bullet \ \omega(1420) \\ f_2(1430) \end{array} $	$\begin{array}{c} 0^{+}(0^{+})^{+}\\ -(1^{+})^{-}(1^{-})^{+}\\ 0^{+}(0^{-})^{+}\\ 0^{+}(1^{+})^{+}\\ 0^{-}(1^{-})^{-}\\ 0^{+}(2^{+})^{+}\end{array}$	$\begin{array}{c c} \bullet a & \phi(0) \\ \bullet f_1 & 050 \\ \pi_1 & 1000 \\ f_0 & 1000 \\ \hline f_2(2150) \\ \phi(2150) \\ \phi(2200) \end{array}$	0+(2+) 1+(1-) 0+(0+)	$ \begin{array}{c} & & \\ + & & \\ $	$1/2(2^{-})$ $1/2(0^{-})$ $1/2(0^{+})$ $1/2(2^{+})$ $1/2(4^{+})$ $1/2(2^{-})$	• $\eta_c(1S)$ • $J/\psi(1S)$ • $\chi_{c0}(1P)$ • $\chi_{c1}(1P)$ $h_c(1P)$
2) 0) 0) 0)	• $f_0(600)$ • $\rho(770)$ • $\omega(782)$ • $\eta'(958)$ • $f_0(980)$ • $a_0(980)$ • $\phi(1020)$	$0^+(0^+)^+$ $1^+(1^-)^-$ $0^-(1^-)^-$ $0^+(0^+)^-$ $1^-(0^+)^-$ $0^-(1^-)^-$	• $a_0(1450)$ • $\rho(1450)$ • $\eta(1475)$ • $f_0(1500)$ • $f_1(1510)$ • $f'_2(1525)$ • $f_0(1565)$	$1^{-}(0^{+}+)$ $1^{+}(1^{-}-)$ $0^{+}(0^{-}+)$ $0^{+}(0^{+}+)$ $0^{+}(1^{+}+)$ $0^{+}(2^{+}+)$ $0^{+}(2^{+}+)$) $f_j(2220)$) $\eta(2225)$) $\rho_3(2250)$) $f_2(2300)$) $f_4(2300)$) $f_2(2340)$ $\rho_3(2350)$	$0^+(2 \text{ or } 4^+)^+$ $0^+(0^-)^-$ $1^+(3^-)^-$ $0^+(2^+)^-$ $0^+(4^+)^-$ $0^+(2^+)^-$ $1^+(5^-)^-$	+) $K_5^{(230)}$ +) $K_5^{(2380)}$ +) $K_4^{(2500)}$ +) $K^{(3100)}$ +) CHA +) $(C = -)$	$\frac{1/2(5^{-})}{1/2(4^{-})}$ $\frac{1/2(4^{-})}{?'(??)}$ RMED $= \pm 1)$ $\frac{1/2(0^{-})}{2}$	• $\chi_{c2}(1P)$ • $\eta_c(2S)$ • $\psi(2S)$ • $\psi(3770)$ • $\chi(3872)$ • $\chi_{c2}(2P)$ $\Upsilon(3940)$
0) 5) <u>bi</u>	$b_1(120)$ $b_1(1235)$ $b_1(1235)$ $b_1(1235)$ $b_1(1260)$ $b_1(1285)$ $b_1(1285)$ $b_1(1295)$	$\begin{array}{c} 0 - (1 + $	$h_1(1595)$ • $\pi_1(1600)$ $a_1(1640)$ $f_2(1640)$ • $\eta_2(1645)$ • $\omega(1650)$	$\begin{array}{c} 0 - (1 + $) a ₀ (2450)) f ₆ (2510)) OTH) Further St	1-(6 + - 0+(6 + - IER LIGHT ates	$\begin{array}{c} +) & D^{+} \\ & D^{0} \\ +) & D^{*} (2007)^{0} \\ & D^{*} (2010)^{\pm} \\ & D_{0}^{*} (2400)^{0} \\ & D_{0}^{*} (2400)^{\pm} \end{array}$	$1/2(0^{-})$ $1/2(0^{-})$ $1/2(1^{-})$ $1/2(1^{-})$ $1/2(0^{+})$ $1/2(0^{+})$	• $\psi(4040)$ • $\psi(4160)$ Y(4260) • $\psi(4415)$
2) 2) 2) 2) 2) 2)	• $\pi(125)$ • $\pi(1300)$ • $\partial_2(1320)$ • $f_0(1370)$ • $h_1(1380)$ • $\pi_1(1400)$ • $\eta(1405)$	1-(0-1) 1-(2+1) 0+(0+1) 7-(1+1) 1-(1-1) 0+(0-1)	• ω ₃ (1670)	0-(3			• $D_1(2420)^{\circ}$ $D_1(2420)^{\pm}$ $D_1(2430)^{\circ}$ • $D_2^*(2460)^{\circ}$ • $D_2^*(2460)^{\pm}$ $D^*(2640)^{\pm}$	$1/2(1^+)$ $1/2(?^7)$ $1/2(1^+)$ $1/2(2^+)$ $1/2(2^+)$ $1/2(?^7)$	$η_b(1S)$ • $T(1S)$ • $\chi_{b0}(1P)$ • $\chi_{b1}(1P)$ • $\chi_{b2}(1P)$ • $T(2S)$
9) 60) 20) - <i>qq</i> CA	• $f_1(1420)$ • $\omega(1420)$ $f_2(1430)$ • $a_0(1450)$ • $\rho(1450)$ • $\eta(1475)$ • $f_0(1500)$ $f_1(1510)$	$0^+(1^+)^+$ $0^-(1^-)^+$ $0^+(2^+)^+$ $1^-(0^+)^+$ $1^+(1^-)^+$ $0^+(0^-)^+$ $0^+(0^+)^+$ $0^+(1^+)^+$					CHARMED (C = 1) D_{5}^{\pm} D_{50}^{\pm} $D_{50}^{\pm}(2317)^{\pm}$ $D_{51}(2460)^{\pm}$ $D_{51}(255)^{\pm}$	$\begin{array}{c} \text{, STRANGE} \\ 5 = \pm 1 \end{array} \\ \hline 0(0^{-}) \\ 0(?^{?}) \\ 0(0^{+}) \\ 0(1^{+}) \\ 0(1^{+}) \\ 0(2^{-}) \end{array}$	$\gamma_{10}^{(1D)}$ $\chi_{b0}(2P)$ $\chi_{b1}(2P)$ $\chi_{b2}(2P)$ $\tau_{(3S)}$ $\tau_{(4S)}$ $\tau_{(10860)}$ $\tau_{(11020)}$
1	• $f'_2(1525)$ $f_2(1565)$ $h_1(1595)$	$0^+(2^+-)^+(2^+-)^-(1^+-)^-(1^+-)^+(2^+-)^+)$	6 (0510)	0+10+10		-7-50-7	 υ₅₂(2573) ψ(4100) 	U(1)	NON-qq
• $\pi_1(1600)$ $a_1(1640)$ $f_2(1640)$ • $\eta_2(1645)$ • $\omega(1650)$ • $\omega_3(1670)$	$\begin{array}{c} 1^{-}(1^{-+}) \\ 1^{-}(1^{++}) \\ 0^{+}(2^{++}) \\ 0^{+}(2^{-+}) \\ 0^{-}(1^{}) \\ 0^{-}(3^{}) \end{array}$	OTHER L	IGHT	$\begin{array}{c} D^{+}(2007)^{\pm}\\ D^{+}(210)^{\pm}\\ D^{+}_{0}(2400)^{0}\\ D^{+}_{0}(2400)^{\pm}\\ D_{1}(2420)^{0}\\ D^{+}_{1}(2420)^{0}\\ D^{+}_{2}(2460)^{\pm}\\ D^{+}_{2}(2460)^{\pm}\\ \hline\\ CHARMEL(C = \\ D^{\pm}_{5}\\ D^{\pm}_{5}\\ D^{\pm}_{5}\\ D^{\pm}_{5}(2317)^{\pm}\\ D^{+}_{5}(2460)^{\pm}\\ D^{+}_{5}(2460)^{\pm}\\ D^{+}_{5}(2460)^{\pm}\\ D^{+}_{5}(2536)^{\pm}\\ D^{+}_{5}(2257)^{\pm}\\ \end{array}$	$\begin{array}{c} 1/2(1^{-}) \\ 1/2(1^{-}) \\ 1/2(0^{+}) \\ 1/2(0^{+}) \\ 1/2(1^{+}) \\ 1/2(1^{+}) \\ 1/2(2^{+}) \\ 1/2(2^{+}) \\ 1/2(2^{+}) \\ 1/2(2^{+}) \\ 1/2(2^{+}) \\ 1/2(2^{+}) \\ 1/2(2^{+}) \\ 0(0^{-}) \\ 0(0^{-}) \\ 0(0^{-}) \\ 0(0^{+}) \\ 0(0^{+}) \\ 0(1^{+}) \\ 0(1^{+}) \\ 0(2^{+}) \end{array}$	$\begin{array}{c} \gamma(4260) \\ \bullet \psi(4415) \\ \hline \\ \hline \\ \hline \\ \eta_b(1S) \\ \bullet & \gamma(1S) \\ \bullet & \chi_{b0}(1P) \\ \bullet & \chi_{b1}(1P) \\ \bullet & \chi_{b2}(1P) \\ \bullet & \gamma(2S) \\ \uparrow & \gamma(1D) \\ \bullet & \chi_{b0}(2P) \\ \bullet & \chi_{b1}(2P) \\ \bullet & \chi_{b2}(2P) \\ \bullet & \chi_{b2}(2P) \\ \bullet & \gamma(10860) \\ \bullet & \gamma(11020) \end{array}$	$\begin{array}{c} 2^{2}(1)\\ 0-(1)\\ \hline \\ \end{array}$	3	
The Particle Zoo?

there were clues

patterns and organizing features

began to emerge in the pile of data

Hundreds of experiments, thousands of physicists measuring lifetimes, probabilities, final state multiplicities...and doing it over and over.

organizing

with many different patterns at a time

Strictly Empirical:

From a 20 year-long accumulation of thousands of different results on production, decay, mass, spin properties of 100's of particles...whole careers. No clue why the patterns.

Various "Quantum Numbers" – all reflecting an underlying "internal symmetry"

Electric Charge Lepton Numbers **Baryon Number** Strangeness

jargon alert:	particle quantum number			
	refers to:	quantities that are inh particles, which are co or decays		
	entomology:	historical to Bohr and		
	example:	electric charge, baryo number, isospin		

S

herently a part of onserved in interactions

Schroedinger

n number, lepton

this is empirical - it's what Nature seems to do

we have some ideas about how/why but understanding quantum number rules is work in progress!

Quantum Number:

Electric Charge

something like these will never happen:

Q:

Q:

so, you'll always see:

total electric charge at the beginning equals total charges at the end

Quantum Number:

Strangeness

clue a

of another kind of "number"

$\pi^- + p \to \Lambda^0 + K^0$

some particles are easily produced...but only in pairs and they, in turn, are reluctant to decay

117

Strangeness, S

strangeness seems to come in pairs

assign "strangeness" empirically.

and yet you *do* see:

$$\Lambda \to p + \pi^-$$

S: -1 0 0

Production of a subset of all baryons seems to require them to come in pairs. Strong interactions conserve Strangeness

Decay of those same baryons...notsomuch Weak interactions change Strangeness by 1 unit

Strong interaction 0

Weak interaction

the dominant Baryons

		Deet Massa						deminent deserv
Particle	Symbol	MeV/c ²	spin	Q	В	S	Lifetime	modes
proton	p	938.3	1/2	+1	+1	0	> 10 ³¹ y	
neutron	n	939.6	1/2	0	+1	0	920	$pe^-\bar{\nu}_e$
Lambda	Λ^0	1115.6	1/2	0	+1	-1	2.6 x 10 ⁻¹⁰	$p\pi^-, n\pi^0$
Sigma	Σ^+	1189.4	1/2	+1	+1	-1	0.8 x 10 ⁻¹⁰	$p\pi^0, n\pi^+$
Sigma	Σ^0	1192.5	1/2	0	+1	-1	6 x 10 ²⁰	$\Lambda^0\gamma$
Sigma	Σ^{-}	1197.3	1/2	-1	+1	-1	1.5 x 10 ⁻¹⁰	$n\pi^-$
Delta	Δ^{++}	1232	3/2	+2	+1	0	0.6 x 10 ²³	$p\pi^+$
Delta	Δ^+	1232	3/2	+1	+1	0	0.6 x 10 ²³	$n\pi^+, \ p\pi^0$
Delta	Δ^0	1232	3/2	0	+1	0	0.6 x 10 ²³	$n\pi^0$
Delta	Δ^{-}	1232	3/2	-1	+1	0	0.6 x 10 ²³	$n\pi^-$
Xi	Ξ^0	1315	1/2	0	+1	-2	2.9 x 10 ⁻¹⁰	$\Lambda^0\pi^0$
Xi	[I]	1321	1/2	-1	+1	-2	1.64 x 10 ⁻¹⁰	$\Lambda^0\pi^-$
Omega	Ω^{-}	1672	3/2	-1	+1	-3	0.82 x 10 ⁻¹⁰	$\Xi^0\pi^-, \ \Lambda^0K^-$

the dominant Mesons

Particle	Symbol	anti- particle	Rest Mass MeV/c ²	spin	Q	В	S	Lifetime
Pion	π^+	π^{-}	139.6	0	+1	0	0	2.6 x 10 ⁻⁸
Pi-zero	π^0	π^0	135	0	0	0	0	920
Kaon	K^+	K^{-}	493.7	0	+1	0	+1	1.24 x 10 ⁻⁸
K-short	K_S^0	K_S^0	497.7	0	0	0	+1	0.89 x 10 ⁻¹⁰
K-long	K_L^0	K_L^0	497.7	0	0	0	+1	5.2 x 10 ⁻⁸
Eta	η^0	η^0	548.8	0	0	0	0	< 10 ⁻¹⁸
Eta-prime	η^0 ′	η^0 ′	958	1	0	0	0	
Rho	ρ^+	$ ho^-$	770	1	+1	0	0	0.4 x 10 ²³
Rho-naught	$ ho^0$	$ ho^0$	770	1	0	0	0	0.4 x 10 ²³
Omega	ω^0	ω^0	782	1	0	0	0	0.8 x 10 ²²
Phi	ϕ	ϕ	1020	1	0	0	0	20 x 10 ⁻²³

anyhow...back to the Zoo problem

all those particles.

There were some hints:

masses seem to clump

look at a set of the mesons

، *د* د

masses seem to clump

look at the baryons

ヽ*Ĺ*し

masses seem to clump

look at a different set of the baryons

ד∟ו