hi

Day 27, 19.04.2018
Particle Physics 2

housekeeping

The end game: next slide Particle Physics:

Readings: Oerter and Hobson

Hobson_PP.pdf is chapter 17 out of Hobson
Homework \#12 is all from MasteringPhysics - normal due date Feynman Diagram rules

3 movies in the lecture slide directory - you'll need them for homework and the final
they are: primitiveDiagrams_X.mp4 where $X=0,1,2$

last 2 weeks \& final

Homework \#13 will be assigned 4/21 and due 4/28 - normal rotation
On-line final exam will be assigned Sunday, 4/29 and due Tuesday night, May 1
will cover material since midterm plus the last week of class
There is 1 more 10 point quiz (stay tuned)...
only the shadow knows when
Remember when I was sick?
been trying to catch up, but not going to make it. Hence:
Final Exam day:

1. You'll arrive at 0745 on May 4, here. I know.
2. I'll provide bagels. You supply liquids.
3. We'll have a quiz.
4. I'll finish with about a 1 hour grand finale, Ialapalooza, mind-bending lecture
5. You'll do your Feynman Diagram Project
6. There will be no poster project this year

honors project began

https://qstbb.pa.msu.edu/storage/Homework_Projects/honors_project_2018/
contains:
the first instructions: the plan \& tutorial
the second instructions - v2 uploaded, added a missing student
the data, assigned by name in the second instructions - see next

dates:

complete first part, March 16
analyze data by April 24 and hand in complete writeup at the final exam

the data

should have been in zipped format

rather, somehow they were unzipped in some process

fixed: now
https://qstbb.pa.msu.edu/ storage/Homework_Projects/ honors_project_2018/

| | Last modified | Size | |
| :--- | :--- | :--- | :--- | :--- |
| | | | |

I need a Section 2

to test the Z-path uploading machinery and instructions

particles in time

An anti-electron...coming into an initial state to a node:

Yes, this makes sense
is the same thing as
An electron coming out of an initial state (?)

Nope, this makes no sense...time-backwards

An anti-electron...coming out of a final state:

Yes, this makes sense
is the same thing as
An electron coming into a final state (?)

Nope, this makes no
sense...time-backwards
primitive

diagrams

are general

but this is completely general...for any charged fermion:

f could be electron, positron, proton, antiproton...and more - any electrically charged fermion.

Their diagrams are identical.

Primitive Diagram Scorecard

your first entry

Primitive Diagrams

beta decay

the inaugural non-QED interaction
Weak Force

Fermi

Theory of

Beta

Decay

uses the Dirac

 ideas of quantum electrodynamics
particle creation and annihilation

Fig. 5. Energy distribution curve of the beta-rays.
$\mathrm{m}_{\text {neutron }}>\mathrm{m}_{\text {proton }}$
a smidgen.

a free neutron has a lifetime of about 11 minutes. He sent the paper to Nature, but it was rejected:
"it contained speculations which were too remote from reality"

from his original paper for different nuclear species parameters

exchange force

the modern view:
if there's a force...there's a field
if there's a field...there's a particle

we know

one

force..so

far

electromagnetism

 electricitymagnetism
united by Relativity remember?

The modern idea:
The force of electromagnetism is "propagated" by the photon.

Multiple names: "propogator"
"Intermediate Vector Boson"

I'll call the photon: the "Messenger Field for Electromagnetism"

charge independence

the force that holds the protons and neutrons together
is the same between $n-n, p-p, n-p$
Strong Force
but only over a very short range...
the STRONG force
overwhelms the electromagnetic force
uncertainty
certainly
to the
rescue
brilliant
observation by
Yukawa
maybe there's a quantum that is active only over the size of a nucleus: "U"
another exchange force/particle?

So: $p \rightarrow n+U$?

Suppose U travels at c within a nucleus... $\Delta t=\Delta x / c$
Then Uncertainty could estimate U's mass... $\Delta E \Delta t=h / 4 \pi$

$$
m_{U}=\Delta E / c^{2}
$$

$$
m_{U} \stackrel{?}{\approx} 100 \times 10^{6} \mathrm{eV}=100 \mathrm{MeV}
$$

the

Yukawa

particle

is the pion

These coupling strengths are large - strong.

In technical terms we call this...the strong interaction.

If we ignore electromagnetism...the proton \& the neutron are

 very much alike - we can treat them as being the same particle
neutrons

and

protons
act like they are identical particles
the electric charge?
as a force...Yukawa's force is 100 times the electromagnetic

For nuclear forces: treat p and n as identical and differing only by a "quantum number" called "Isospin"
I

$$
\begin{aligned}
& \text { (} \\
& \mathbf{N} \\
& \text { "nucleon" }
\end{aligned}
$$

A neutron... is a "nucleon" with "isospin down" A proton... is a "nucleon" with "isospin up"

They go together...within the strong, nuclear force.
How?
refers to:
entomology:
example:
either a proton or a neutron
from "nucleus"...the "-on" tends to be a particle name
"nucleon force"
strange things in cosmic rays
thick photographic substrates

by 1950 the forces were identified

"strong"
as evidenced by the pion (refined later)
"electromagnetic"
as evidenced by the exchange of photons among electrically charged particles
"weak"
as originally evidenced by neutron beta decay, and subsequently pion, muon, and other hadronic decays
"gravitational"
the weakest of all...quantum theory of gravity still a mystery
three
forces now of vastly different strengths

Electromagnetic force 0.007

Weak force 0.000001

FAMILIES

Nature prefers
like-particles

Lepton
Families
electrons and a neutrino
muons and a neutrino

These sorts of patterns are a huge deal.

$$
\begin{array}{r}
\mathrm{Q} \\
0 \\
-1
\end{array} \quad\binom{\nu_{e}}{e} \quad\binom{\nu_{\mu}}{\mu} \quad\binom{\nu_{\tau}}{\tau}
$$

Abstract

taus and a neutrino

(2) -

\square

by 1955

100's of them

things wer

me what's so "elementary" about that?

hadron

refers to:
any particle that interacts via the Strong Force
entomology:
example:
$\alpha \bar{\rho} \rho o ́ \sigma$ "hadros" "large", "massive"
proton and neutron not electron, not photon
jargon alert: lepton
refers to:
entomology:
example:
originally, an electron, muon, neutrino
" $\lambda \varepsilon \pi t$ tós" (leptos), "fine, small, thin"
electron, muon, neutrino, tau!

The Particle Zoo?

jargon alert: particle quantum numbers
refers to:
quantities that are inherently a part of particles, which are conserved in interactions or decays
entomology:
example:
historical to Bohr and Schroedinger
electric charge, baryon number, lepton number, isospin
something like these will never happen:
so, you'll always see:
total electric charge at the beginning equals total charges at the end

Strangeness,

S

strangeness

 seems to come in pairs
assign "strangeness" empirically.

$$
\pi^{-}+p \rightarrow \Lambda^{0}+K^{0}
$$

$$
\begin{array}{lllll}
\mathrm{S}: & 0 & 0 & -1 & +1
\end{array}
$$

Strong interaction

$$
\begin{array}{lllll}
\mathrm{S}: & 0 & 0 & -1 & 0
\end{array}
$$

and yet you do see:

$$
\Lambda \rightarrow p+\pi^{-}
$$

$$
\begin{array}{llll}
\mathrm{S}: & -1 & 0 & 0
\end{array}
$$

Weak
interaction

Production of a subset of all baryons seems to require them to come in pairs.
Strong interactions conserve Strangeness
Decay of those same baryons...notsomuch Weak interactions change Strangeness by 1 unit

the dominant Baryons

$\left.\begin{array}{|c|c|c|c|c|c|c|c|}\hline \text { Particle } & \text { Symbol } & \begin{array}{c}\text { Rest Mass } \\ \mathrm{MeV} / \mathbf{c}^{2}\end{array} & \text { spin } & \mathbf{Q} & \mathbf{B} & \mathbf{s} & \text { Lifetime }\end{array} \begin{array}{c}\text { dominant decay } \\ \text { modes }\end{array}\right]$

the dominant Mesons

Particle	Symbol	antiparticle	Rest Mass $\mathrm{MeV} / \mathrm{c}^{2}$	spin	Q	B	S	Lifetime	dominant decay modes
Pion	π^{+}	π^{-}	139.6	0	+1	0	0	2.6×10^{-8}	$\mu^{+} \nu_{\mu}$
Pi-zero	π^{0}	π^{0}	135	0	0	0	0	920	2γ
Kaon	K^{+}	K^{-}	493.7	0	+1	0	+1	1.24×10^{-8}	$\mu^{+} \nu_{\mu}, \pi^{+} \pi^{0}$
K-short	K_{S}^{0}	K_{S}^{0}	497.7	0	0	0	+1	0.89×10^{-10}	$\pi^{+} \pi^{-}, 2 \pi^{0}$
K-long	K_{L}^{0}	K_{L}^{0}	497.7	0	0	0	+1	5.2×10^{-8}	$\pi^{ \pm} \ell^{\mp} \nu_{\ell}$
Eta	η^{0}	η^{0}	548.8	0	0	0	0	$<10^{-18}$	$2 \gamma, \pi^{+} \pi^{-} \pi^{0}$
Eta-prime	$\eta^{0 \prime}$	$\eta^{0 \prime}$	958	1	0	0	0	...	$\pi^{+} \pi^{-} \eta$
Rho	ρ^{+}	ρ^{-}	770	1	+1	0	0	0.4×10^{-23}	$\pi^{+} \pi^{-}, 2 \pi^{0}$
Rho-naught	ρ^{0}	ρ^{0}	770	1	0	0	0	0.4×10^{-23}	$\pi^{+} \pi^{-}$
Omega	ω^{0}	ω^{0}	782	1	0	0	0	0.8×10^{-22}	$\pi^{+} \pi^{-} \pi^{0}$
Phi	ϕ	ϕ	1020	1	0	0	0	20×10^{-23}	$K^{+} K^{-}, K^{0} \bar{K}^{0}$

patterns emerged

to Murray Gell-Mann \& (independently) Yuval Ne’eman in 1964

$$
\begin{gathered}
\Delta^{0} \Xi^{-} \Delta^{-} \\
\Sigma^{-} \Lambda^{0} \Xi^{*} p \\
\Delta^{+} \Sigma^{0}{ }^{*} \Sigma^{*-} \\
\Sigma^{*+} \Delta^{++} n \\
\Xi^{*} \Sigma^{+} \Sigma^{* 0}
\end{gathered}
$$

family arrangements

quarks

the mathematical description of such patterns

1964

Murray Gell-Mann

1929 -
theoretician
Nobel Laureate 1969

Yale at age of 15. PhD from MIT at age of 22.

Speaks at least 13 languages fluently. Studies linguistics now, among other things.

Unraveled many of the organization puzzles of the particle zoo:
strangeness
an empirical mass formula relating them

Worries a lot now about the nature of physical law.

A not-so-good TED lecture on mathematical Beauty in physics...link below.

Not known for his humility.

Gell-Mann found that the patterns work

Gell-Mann's original pattern for quarks. Changed...
if every particle is composed of smaller bits
with fractional electric charge:
charge of up quark:
charge of down quark: charge of strange quark:
$+2 / 3$ e
$-1 / 3$ e
$-1 / 3$ e

fundamental particles, circa...now

quarks and leptons
hadrons are composite: made of quarks
electrons and cousins are fundamental on their own

Baryons \& Mesons differ by quark-content Baryons are made of 3 quarks

Mesons are made of 1 quark and 1 antiquark

Quarks

1964 version

fundamental fermions

in same league as electrons and neutrinos

S

Quark	Symbol	Rest Mass MeV/c	spin	Q	B	S
up	u	$1.7-3.3$	$1 / 2$	$+2 / 3$	$1 / 3$	0
down	d	$4.1-5.8$	$1 / 2$	$-1 / 3$	$1 / 3$	0
strange	s	101	$1 / 2$	$-1 / 3$	$1 / 3$	-1

piece 'em together:

proton

electric charge $=+1$

Quark	Symbol	Rest Mass MeV/c	spin	Q	B	s
up	u	$1.7-3.3$	$1 / 2$	$+2 / 3$	$1 / 3$	0
down	d	$4.1-5.8$	$1 / 2$	$-1 / 3$	$1 / 3$	0
strange	s	101	$1 / 2$	$-1 / 3$	$1 / 3$	-1

piece 'em together:

proton electric charge $=+1$

Quark	Symbol	Rest Mass MeV/c	spin	Q	B	s
up	u	$1.7-3.3$	$1 / 2$	$+2 / 3$	$1 / 3$	0
down	d	$4.1-5.8$	$1 / 2$	$-1 / 3$	$1 / 3$	0
strange	s	101	$1 / 2$	$-1 / 3$	$1 / 3$	-1

piece 'em together:

neutron

electric charge $=0$

Quark	Symbol	Rest Mass MeV/c	spin	Q	B	S
up	u	$1.7-3.3$	$1 / 2$	$+2 / 3$	$1 / 3$	0
down	d	$4.1-5.8$	$1 / 2$	$-1 / 3$	$1 / 3$	0
strange	s	101	$1 / 2$	$-1 / 3$	$1 / 3$	-1

piece 'em together:

neutron

$+2 / 3$

electric charge $=0$
$-1 / 3$
$-1 / 3$

Quark	Symbol	Rest Mass MeV/c	spin	Q	B	s
up	u	$1.7-3.3$	$1 / 2$	$+2 / 3$	$1 / 3$	0
down	d	$4.1-5.8$	$1 / 2$	$-1 / 3$	$1 / 3$	0
strange	s	101	$1 / 2$	$-1 / 3$	$1 / 3$	-1

they all fit

$\operatorname{spin} 3 / 2$

like a glove

S

discovered at Brookhaven within a year

 the "Omega minus" was discovered at Brookhaven National Lab S

$$
-1-\frac{1}{2} \quad 0 \quad \frac{1}{2} \quad 1
$$

I

most famous bubble chamber picture in history, 1964

FIG. 2. Photograph and line diagram of event showing dec

The event in question is shown in Fig. 2, and the pertinent measured quantities are given in Table I. Our interpretation of this event is

$$
\begin{aligned}
& K^{-}+p \rightarrow \Omega^{-}+\begin{array}{l}
+K^{+}+K^{0} \\
\begin{array}{l}
\Xi^{0}+\pi^{-} \\
\Lambda^{0}+\pi^{0}
\end{array}
\end{array}
\end{aligned}
$$

particle:
 Omega minus

symbol:
Ω^{-}
charge:
mass:
spin:
category:
-1
1672.45 MeV/c²

3/2
Fermion, baryon, $\mathrm{I}=\mathrm{0}, \mathrm{B}=1, \mathrm{~S}=-3$

the dominant Baryons

Particle	Symbol	Rest Mass $\mathbf{M e V} / \mathbf{c}^{2}$	spin	\mathbf{Q}	\mathbf{B}	\mathbf{s}	Lifetime	dominant decay modes
proton	p	938.3	$1 / 2$	+1	+1	0	$>10^{31} \mathrm{y}$	
neutron	n	939.6	$1 / 2$	0	+1	0	920	$p e^{-} \bar{\nu}_{e}$

mesons

	Quark	Symbol	$\begin{gathered} \text { Rest } \\ \text { Mass } \\ \text { MeV/c² } \end{gathered}$	spin	Q	B	S		
	up	u	1.7-3.3	1/2	+2/3	$1 / 3$	0		
	down	d	4.1-5.8	1/2	-1/3	1/3	0		
	strange	s	101	1/2	-1/3	1/3	-1		
The pion		Particle	Symbol	antiparticle	Rest Mass $\mathrm{MeV} / \mathrm{c}^{2}$	spin	Q	B	S
		Pion	π^{+}	π^{-}	139.6	0	+1	0	0
		$\pi^{+}=\left(\begin{array}{lll}u & \& & \bar{d}\end{array}\right)$				has the right stuff.			
Q:		+1	$+2 / 3+-(-1 / 3)$						
B:		0	$1 / 3+-(1 / 3)$						
S:		0		0					

a little different

a similar thing happens for the mesons
$\operatorname{spin} 1$

meson quark
 content

spin 1

I

the dominant Mesons

| Particle | Symbol | anti-
 particle | Rest
 MeV/c | spin | \mathbf{Q} | \mathbf{B} | \mathbf{s} | Lifetime | dominant decay
 modes | quark content |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pion | π^{+} | π^{-} | 139.6 | 0 | +1 | 0 | 0 | 2.6×10^{-8} | $\mu^{+} \nu_{\mu}$ | $u \bar{d}$ |
| Pi-zero | π^{0} | π^{0} | 135 | 0 | 0 | 0 | 0 | 920 | 2γ | $\frac{1}{\sqrt{2}(u \bar{u}+d \bar{d})}$ |
| Kaon | K^{+} | K^{-} | 493.7 | 0 | +1 | 0 | +1 | 1.24×10^{-8} | $\mu^{+} \nu_{\mu}, \pi^{+} \pi^{0}$ | $u \bar{s}$ |
| K-short | K_{S}^{0} | K_{S}^{0} | 497.7 | 0 | 0 | 0 | +1 | 0.89×10^{-10} | $\pi^{+} \pi^{-}, 2 \pi^{0}$ | $d \bar{s}, s \bar{d}$ |
| K-long | K_{L}^{0} | K_{L}^{0} | 497.7 | 0 | 0 | 0 | +1 | 5.2×10^{-8} | $\pi^{ \pm} \ell^{\mp} \nu_{\ell}$ | $d \bar{s}, s \bar{d}$ |
| Eta | η^{0} | η^{0} | 548.8 | 0 | 0 | 0 | 0 | $<10^{-18}$ | $2 \gamma, \pi^{+} \pi^{-} \pi^{0}$ | $u \bar{u}, d \bar{d}, s \bar{s}$ |
| Eta-prime | $\eta^{0 \prime}$ | $\eta^{0 \prime}$ | 958 | 1 | 0 | 0 | 0 | \ldots | $\pi^{+} \pi^{-} \eta$ | $u \bar{u}, d \bar{d}, s \bar{s}$ |
| Rho | ρ^{+} | ρ^{-} | 770 | 1 | +1 | 0 | 0 | 0.4×10^{-23} | $\pi^{+} \pi^{-}, 2 \pi^{0}$ | $u \bar{d}$ |
| Rho-naught | ρ^{0} | ρ^{0} | 770 | 1 | 0 | 0 | 0 | 0.4×10^{-23} | $\pi^{+} \pi^{-}$ | $u \bar{u}, d \bar{d}$ |
| Omega | ω^{0} | ω^{0} | 782 | 1 | 0 | 0 | 0 | 0.8×10^{-22} | $\pi^{+} \pi^{-} \pi^{0}$ | $u \bar{u}, d \bar{d}$ |
| Phi | ϕ | ϕ | 1020 | 1 | 0 | 0 | 0 | 20×10^{-23} | $K^{+} K^{-}, K^{0} \bar{K}{ }^{0}$ | $s \bar{s}$ |

spins work out

Keep track of quark spins

$$
\begin{array}{ll}
\operatorname{spin}+1 / 2 & q \uparrow \\
\operatorname{spin}-1 / 2 & q \downarrow
\end{array}
$$

for example, a couple of baryons:

$$
p \quad u \uparrow u \downarrow d \uparrow \quad \text { total spin: } 1 / 2
$$

$$
\Delta^{+} \quad u \uparrow u \uparrow d \uparrow \quad \text { total spin: } 3 / 2
$$

for example, a couple of mesons:

$$
\begin{array}{lll}
\pi^{+} & u \uparrow \bar{d} \downarrow & \text { total spin: } 0 \\
\rho^{+} & u \uparrow \bar{d} \uparrow & \text { total spin: } 1
\end{array}
$$

there are still

A model of "quark molecules"...

100's more baryons and mesons

what's up with that? you're asking

Molecules can have vibrational and rotational excited states...

So can quarks.
N^{*} is a state with the same quark content as a proton
N^{*} but which has a high orbital angular momentum

$$
d \quad u \quad u
$$

Other states can be well-modeled by assuming relative vibrational modes..

$$
d
$$

you can

 tell a particle physicist by the books that we carry"I laughed, I cried"

now the

jargon

Hadrons: particles made of quarks.

gets a little more straightforward

Mesons: particles made of 1 quark and 1 antiquark.

a variety of consequences

One could begin to understand particle decays and reactions in terms of pseudo-Feynman diagrams* like this:

$$
\begin{array}{ll}
\pi^{+}+p \rightarrow \pi^{+}+p \quad \begin{array}{l}
\text { Fermi had produced "resonances" } \\
\\
\\
\\
\\
\text { "hat suggested that something was } \\
\text { in between" the initial and final } \\
\text { states }
\end{array}
\end{array}
$$

$$
\pi^{+}+p \rightarrow \Delta^{++} \rightarrow \pi^{+}+p
$$

scatterings now are thought of diferently
by following the lines...
$\pi^{+}+p \rightarrow \Delta^{++} \rightarrow \pi^{+}+p$
Feynman Diagram, pre-1964:

in quark language:

how about a strong interaction decay?

a little nonintuitive.
$\Delta^{0} \rightarrow \pi^{-}+p$
the old way:

the quark way:

3 quarks
some quark-creation required!

5 quarks
stay tuned.

is the world made of actual

 quarks?or is this just a convenient organizing scheme
that's all Gell-Mann thought

But evidence started to accumulate that surprised everyone

First piece of convincing evidence:

we can bang on them

individually...Feynman saw this first.

remember.

the crucial thing in order to "see" something?
wavelength has to be about the size of the object
larger the momentum
the smaller the spatial resolving capability
scattering of an electron from a nucleus
slow electron, long wavelength photon

"sees" the whole nucleus
scattering of an electron from a nucleus
fast electron, medium-short wavelength photon
(e)

"sees" an individual proton in the nucleus
scattering of an electron from a nucleus
very fast electron, very-short wavelength photon
(e)

"sees" an individual quark in a proton or neutron
That's how we became convinced in 1969 -
the same sort of backwards scattering as Rutherford's

Share this:

The Nobel Prize in Physics 1990

Jerome I. Friedman Prize share: $1 / 3$

Henry W. Kendall Prize share: $1 / 3$

Photo: T. Nakashima Richard E. Taylor Prize share: 1/3

The Nobel Prize in Physics 1990 was awarded jointly to Jerome I. Friedman, Henry W. Kendall and Richard E. Taylor "for their pioneering investigations concerning deep inelastic scattering of electrons on protons and bound neutrons, which have been of essential importance for the development of the quark model in particle physics".

Photos: Copyright © The Nobel Foundation

Share this:

[^0]particle: up quark
symbol:
charge:
mass:
spin:
category:
$+2 / 3$
1.7 to $3.3 \mathrm{MeV} / \mathrm{c}^{2}$

1/2
Fermion, $\mathrm{I}=+1 / 2, \mathrm{~B}=1 / 3, \mathrm{~S}=0$
particle: down quark
symbol:
charge:
mass:
spin:
category:
$-1 / 3$
4.1 to $5.8 \mathrm{MeV} / \mathrm{c}^{2}$

1/2
Fermion, $\mathrm{l}=-1 / 2, \mathrm{~B}=1 / 3, \mathrm{~S}=0$
particle: strange quark
symbol: s
charge: $\quad-1 / 3$
mass:
spin:
category:
$101 \mathrm{MeV} / \mathrm{c}^{2}$
1/2
Fermion, $\mathrm{I}=-1 / 2, \mathrm{~B}=1 / 3, \mathrm{~S}=-1$

shifting gears

the weak interaction needs a boson
the quantum relativistic field theory theme song:

this kind of magic:

If there is a force...there's a field

If there's a field, there's a quantum to go with it.

Because Nature is Clumpy.

for the electromagnetic interaction:

 the force is the electromagnetic force the field is $E \& B$ the clumpiness - the quantum - is:The photon: γ

Well, the Weak Force

 must have a field...yadda yadda yadda

If there is a force...there's a field

If there's a field, there's a quantum to go with it.

Because Nature is Clumpy.
for weak interaction:
the field must be a weak field...\& Massive \& electrically charged
the clumpiness -the quantum - must be something else.
here's a weak interaction

neutron beta

decay

changes electric charge
the weak interaction here changes the bottom and the top of these doublets

Manipulate the graph in the now familiar way:

the muon

decay is

the same

 sort ofin that second way of looking at it:

$$
\binom{\nu_{e}}{e}>\text { and } \quad\binom{\nu_{\mu}}{\mu}
$$

do it

again?

can a "photon" be forced to exist that governs the weak interaction?

It was a dream that the electromagnetic interaction

could have a weak interaction counterpart.

Feynman and Murray Gell-Mann worked out a consistent theory based on the idea of a "heavy" photon with electric charge.
"W" for "Weak"

Notice that f and f^{\prime} and $\mathrm{W}^{ \pm}$all have to have their electric charges assigned so that electric charge is conserved.

temporary

 entries
into your

 table of primitive diagrams
so, a new primitive diagram

for the Weak Interaction

keep
 track of the
 charge
 flow

there are 2 W
charged states

$$
\begin{aligned}
& n \rightarrow p+W^{-} \rightarrow p+e^{-}+\bar{\nu}_{e} \\
\mathrm{Q}: & 0=+1+-1=+1+-1+0=0
\end{aligned}
$$

So: $\quad W^{-}$lowers the electrical charge by 1

$$
W^{+} \text {raises the electrical charge by } 1
$$

here is

where

those weak "doublets"
come in

The particle doublets that we know so far:

making these transitions is the W Boson's job.

Notice, that all of these transitions change the electric charge as well as the particle type

call a generic lepton, " ℓ "

$$
\begin{aligned}
& \binom{\nu_{\ell}}{\ell} \longleftrightarrow W \\
& \ell=e, \mu, \tau
\end{aligned}
$$

"deep inelastic scattering"

hitting quarks individually
of course in a statistical fashion
neutrinos do it too...

analyses of these reactions,

$$
\nu N \rightarrow \mu X \quad e N \rightarrow e X
$$

confirm the point-like (?) nature of quarks
confirm their apparent loose-binding within nucleons (in a second)
confirm their fractional electric charges!
so, a new
primitive
diagram

for the Weak

 Interaction with quarks, to go with the leptons

and in the quark interpretation: the reason W does: $\binom{p}{n} \zeta$ is because it does: $\binom{u}{d} \zeta$

instead of what I had before:

there are

 still weak
interactions

including transitions among quarks

The particle doublets that we know so far:

making these transitions is the W Boson's job.

Notice, that all of these transitions change the electric charge as well as the particle type

call a generic lepton, " ℓ "

$$
\begin{aligned}
& \binom{\nu_{\ell}}{\ell} \longleftrightarrow W \\
& \ell=e, \mu, \tau
\end{aligned}
$$

there are

still weak

interactions

including
 transitions among

 quarksThe particle doublets in quark language:
Q

$$
\begin{aligned}
& +2 / 3 \\
& -1 / 3
\end{aligned}\binom{u}{d} \longleftrightarrow W\binom{?}{s}\left\langle W \begin{array}{l}
\text { making these transitions } \\
\text { is still the W Boson's job. }
\end{array}\right.
$$

call a generic lepton, " ℓ " call a generic quark, " q " $\binom{\nu_{\ell}}{\ell} \longleftrightarrow W\binom{q}{q^{\prime}} \longleftrightarrow W$
$\ell=e, \mu, \tau \quad q=u, d, s$

> or:
call a generic fermion, " f "

$$
\begin{aligned}
& \binom{f}{f^{\prime}} \longleftrightarrow W \\
& f=\ell, q
\end{aligned}
$$

NOW . . . your
second

entry into

your
table of primitive diagrams

particle: charm quark
symbol:
charge:
mass:
spin:
category:

C

$+2 / 3$
$1,270 \mathrm{MeV} / \mathrm{c}^{2}$
1/2
Fermion, $\mathrm{l}=0, \mathrm{~B}=1 / 3, \mathrm{~S}=0, \mathrm{C}=+1$

SO,

decays

we've

seen

just put in the decaying quark and let the other "spectator quarks"
come along for the ride

$$
\pi^{+} \rightarrow \mu^{+}+\nu_{\mu}
$$

responsible for making neutrino beams from proton accelerators

Strong interaction, again:

The original question about nuclei...
now in play for quarks:
what holds the quarks inside of the baryons and mesons?

Gross,

Politzer,

and

Wilczek

2004

"asymptotic freedom" in strong interactions

Nobelprize.org
The Oft

Home / Nobel Prizes / Nobel Prize in Physics / The Nobel Prize in Physlcs 2004

About the Nobel Prizes	凧Prirter Friendly	(Share	\square Tella Friend	Q comme		
Facts and Lists	1901					
D Nobel Prize in Physics				Prize category: Physics		-
All Nobel Prizes in Physics	Sort and list Nobel Prizes and Nobel Laur $\hat{\sim}$					\dagger

All Nobel Prizes in Physics
Facts on the Nobel Prize in
Physics
Prize Awarder for the Nobel Prize in Physics
Nomination and Selection of Nomination and
Physics Laureates
Nobel Medal for Physics
Articles in Physics
Video Interviews
Video Nobel Lectures
Nobel Prize in Chemistry
Nobel Prize in Physiology or
Medicine
Nobel Prize in Literature
Nobel Peace Prize
Prize in Economic Sciences
Nobel Laureates Have Their Say
Nobel Prize Award Ceremonies
Nomination and Selection of
Nobel Laureates
David J. Gross
H. David Politzer

Frank Wilczek

The Nobel Prize in Physics 2004 was awarded jointly to David J. Gross, H. David Politzer and Frank Wilczek "for the discovery of asymptotic freedom in the theory of the strong interaction".

Photos: Copyright © The Nobel Foundation

TO CITE THIS PAGE:

MLA style: "The Nobel Prize in Physics 2004". Nobelprize.org. 10 Apr 2013
http:/henw.nobelprize.org/nobel_prizes/physics/laureates/2004/
it's the glue that holds everything together virtually

Predicted the existence of the Strong Messenger

 Particle: the Gluonmy gluon

third
 entry
 into your

table of primitive diagrams

there are two amazing things

about gluons

thing 1

they self-interact

a photon propagates the electromagnetic force...but it does not have an electric charge

the gluon propagates the strong force...and it DOES have a "strong charge"

This has significant consequences...almost magical

fourth and fifth entries

 into your table of primitive diagrams

thing 2

their force field is the opposite of electromagnetism, or gravity

ah, but the gluon is odd

pull ${ }^{6} \mathrm{em}$
 apart

called

quark confinement

We don't

see

individual quarks or
gluons
they make more quarks and gluons
and interact very quickly into a cascade of particles
"quark-gluon jets"

in ATLAS

'"hard"' quark production

particle: gluon
symbol: $\quad g$
charge: 0
mass: 0
spin:
category:
1
Strong Vector Boson
three
forces now of vastly different strengths

Electromagnetic force 0.007

Weak force 0.000001

proton

symbol:
charge:
mass:
spin:
category:

down quark

symbol:
charge:
mass:
spin:

Fermion, $\mathrm{I}=-1 / 2, \mathrm{~B}=1 / 3, \mathrm{~S}=0$
particle:
up quark
symbol:
charge:
mass:
spin:
category:

Fermion, $\mathrm{I}=+1 / 2, \mathrm{~B}=1 / 3, \mathrm{~S}=0$
why does the proton weigh?

Field Energy

SO:

$m=$

when you step on the scale

you measure the earth's attraction

to the gluons' mass-energy in your protons and neutrons and you use the non-quantum Newton's theory to do it
your "weight" is a quantum relativistic field theoretic thing

here's the elementary particles story

circa 1975

the

messengers

spin 1 Bosons
circa 1980

particle: bottom quark
symbol:
charge:
mass:
spin:
category:
b
$-1 / 3$ e
4.5 GeV/c² $=4.5 \mathrm{p}$

1/2
Fermion, quark

the

'"top quark'"

was

discovered in 1995

by two experiments at Fermilab

with MSU faculty and students intimately involved

Observation of the Top Quark

The DO Collaboration reports on a search for the sandard model top quark in pp collisions at $\sqrt{s}=1.8 \mathrm{TeV}$ ut the Fermilab Tevarron with an integruted luminosity of approximately $50 \mathrm{p}^{-1}$. We have searched for π production in the dilkptoun and single-lepton decay channels with and without tagging of b-quark jets. We observed 17 events with an expected hackground of 3.8 ± 0.6 events. The probability for an upward fluctuation of the background to produce the observed signal is 2×10
(equivalent to 4.6 standard deviations). The kinematic properties of the excess events are consistent (equivalent to 4.6 standard deviations). The kinematic properties of the excess events are consisten
with top quark decay. We conclude that we have observed the top quark and measured its mass to be $199-21$ (stat) ± 22 (syys) $\mathrm{CeV} / \mathrm{c}^{1}$ and its production cross section to be $6.4 \pm 2.2 \mathrm{pb}$
Pacs nembers $14.65 . \mathrm{Hz} .138500 .1385 . \mathrm{Nu}$

```
We establish the existence of the top quark using a }67\mp@subsup{\textrm{pb}}{}{-1}\mathrm{ data sample of $pP collisions at
\sqrt{}{s}-1.8 TeV collected with the Collider Detector at Fermilab (CDF). Employing techniques similar
to those we previously published. we observe a signal consistent with Hf docay to WWb\overline{b}, but
inconsistent with the hackgroand prediction by 4.8%. Adlitional evidence for the top quark is
176 = %(stat) }=10(\mathrm{ sys) GeV/c
PACS numbers 14.65.H2. 1385.08. 13.85.Ni
```

February 24th, 11AM, we submitted our discovery paper to Physical Review Letters

March 2, 1995 the announcement was made at Fermilab

top quark

symbol:
charge:
mass:
spin:
category:
$+2 / 3$ e
$172.0 \pm 2.2 \mathrm{GeV} / \mathrm{c}^{2}=172 \mathrm{p}$
1/2
Fermion, quark

quarks \& leptons

the weak

interactions

still operate with

 the increased doublet setsThe complete (circa 2000) particle doublets:

$$
\begin{aligned}
+2 / 3 & \binom{u}{-1 / 3}
\end{aligned}\binom{c}{s} \quad\binom{t}{b}
$$

the weak

interactions

still operate with the increased doublet sets

The complete (circa 2000) particle doublets:
Q

$$
+2 / 3 \quad\left(\begin{array}{l}
u \\
-1 / 3 \\
d
\end{array}\right) \longleftrightarrow W\binom{c}{s} \longleftrightarrow W\binom{t}{b} \longleftarrow W
$$

$$
\begin{gathered}
0 \\
-1
\end{gathered}\binom{\nu_{e}}{e} \longleftarrow W\binom{\nu_{\mu}}{\mu} \longleftrightarrow W\binom{\nu_{\tau}}{\tau} \longleftrightarrow W
$$

the

modern

picture

of the elementary particle patterns circa 2000 and still current
the lepton families...lepton "doublets"

$$
\binom{\nu_{e}}{e^{-}} \quad\binom{\nu_{\mu}}{\mu^{-}} \quad\binom{\nu_{\tau}}{\tau^{-}}
$$

and their interactions: \mathbf{X} no, $\boldsymbol{\checkmark}$ yes.

leptons	ν_{e}	e	ν_{μ}	μ	ν_{τ}	τ
$\begin{aligned} & \text { strong } \\ & \substack{\text { Onog }} \end{aligned}$	x	x	x	x	x	x
$\sim_{\gamma}^{\text {ectumgene }}$	x	\checkmark	x	\checkmark	x	\checkmark
$\sim_{W}^{\text {meak }}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Lexional	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

the

modern

picture

of the elementary particle patterns circa 2000
the quark families...quark "doublets"

$$
\binom{u}{d} \quad\binom{c}{s} \quad\binom{t}{b}
$$

and their interactions: \mathbf{X} no, $\boldsymbol{\checkmark}$ yes.

quarks	u	d	c	s	t	b
Strong ${ }^{\text {m }}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
electromagnetic nWn 2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\begin{gathered} \text { veak } \\ m W W \end{gathered}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Itional	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

The Particle Zoo?

The Particle Zoo? tamed.

shifting gears

the weak and electromagnetic forces are one.

'"phase transitions"

not a subject of Particle Physics

we thought
but we stole a theory from materials scientists
think about a phase transition

what a physicist sees is a change of symmetry

there are basically
 2 kinds

1st Order nucleation

2d Order continuous

Boiling starts in various locations inside of liquid water

Other kinds of phase transitions happen uniformly throughout the substance.
you
probably

are mostly

familiar
with:
freezing
melting
boiling

These "2nd Order," phase transitions are continuouseverywhere:
crystallization
changes of density
magnetism
superconductivity
superfluidity
plasma transition
electron gases
Bose gases

[^0]: To cite this page
 MLA style: "The Nobel Prize in Physics 1990". Nobelprize.org. Nobel Media AB 2 014. Web. 20 Apr 2016. <http://www.nobelprize.org/nobel_prizes/physics/laur eates/1990/>

