

Day 28, 24.04.2018 Particle Physics 3 & Cosmology 5

housekeeping

The end game: next slide

Particle Physics:

Readings: Oerter, Cosmic Horizons, and Hobson

Hobson_quantum_fields.pdf is chapter 17

Homework #13 is: partly from MasteringPhysics - normal due date

partly on paper...see the blog

Feynman Diagram rules

3 movies in the lecture slide directory - you'll need them for homework and the final

they are: primitiveDiagrams_X. mp4

2

where X = 0, 1, 2

last 2 1 weeks & final

Homework #13 will be assigned 4/21 and due 4/28 - normal rotation

On-line final exam will be assigned Sunday, 4/29 and due Tuesday night, May 1

will cover material since midterm plus the last week of class

There is 1 more 10 point quiz (stay tuned)...

only the shadow knows when...actually, watch the blog. Quiz up tomorrow, return Thursday in class.

Remember when I was sick?

been trying to catch up, but not going to make it. Hence:

Final Exam day:

- 1. You'll arrive at 0745 on May 4, here. I know.
- 2. I'll provide bagels. You supply liquids.
- 3. We'll have a quiz.
- 4. I'll finish with about a 1 hour grand finale, lalapalooza, mind-bending lecture
- 5. You'll do your Feynman Diagram Project
- 6. There will be no poster project this year

I'm did rethink this, do it by May 4th midnight, but no

now hear this:

sirs@msu.edu <sirs@msu.edu></sirs@msu.edu>		🖹 Inbox - Excha
SIRS Online Forms		
To: brockr@msu.edu <brockr@msu.edu></brockr@msu.edu>		
	▣ ♠ ♠ →	

To: RAYMOND L BROCK

From: <u>sirs@msu.edu</u>

Student Instruction Rating System (SIRS Online) collects student feedback on courses and instruction at MSU. Student Instructional Rating System (SIRS Online) forms will be available for your students to submit feedback during the dates indicated:

ISP 220 001: 4/16/2018 - 5/16/2018 ISP 220 002: 4/16/2018 - 5/16/2018

Direct students to https://sirsonline.msu.edu.

Students are required to complete the SIRS Online form OR indicate within that form that they decline to participate. Otherwise, final grades (for courses using SIRS Online) will be sequestered for seven days following the course grade submission deadline for this semester.

SIRS Online rating summaries are available to instructors and department chairs after 5/16/2018 at https://sirsonline.msu.edu. Instructors should provide copies of the rating summaries to graduate assistants who assisted in teaching their course(s). Rating information collected by SIRS Online is reported in summary form only and cannot be linked to individual student responses. Student anonymity is carefully protected.

If you have any questions, please contact Michelle Carlson, (mcarlson@msu.edu, (517)432-5936).

honors project began

https://qstbb.pa.msu.edu/storage/Homework_Projects/honors_project_2018/

contains:

the first instructions: the plan & tutorial the second instructions -v2 uploaded, added a missing student the data, assigned by name in the second instructions - see next

dates:

complete first part, March 16

analyze data by April 24 and hand in complete writeup at the final exam

have I need a Section 2

to test the Z-path uploading machinery and instructions

working on it. I'll be in touch via email.

nd instructions email.

here's what we've learned

There are three kinds of fields: messenger fields, quark fields, and lepton fields

oscillations - the particles - of quark fields are the constituents of protons and neutrons, but also hundreds of other "particles" that nature will produce

oscillations of lepton fields - electrons and the electron neutrino and the other two lepton pairs, round out "matter"

Messenger fields carry the four known forces from one particle to another

the now jargon

gets a little more straightforward

Hadrons: particles made of quarks.

Baryons: particles made of 3 quarks.

now defined:

now defined:

Mesons: particles made of 1 quark and 1 antiquark.

the dominant Baryons

Particle	Symbol	Rest Mass MeV/c ²	spin	Q	В	S	Lifetime	dominant decay modes	quark content
proton	p	938.3	1/2	+1	+1	0	> 10 ³¹ y		uud
neutron	n	939.6	1/2	0	+1	0	920	$pe^-\bar{\nu}_e$	ddu
Lambda	Λ^0	1115.6	1/2	0	+1	-1	2.6 x 10 ⁻¹⁰	$p\pi^-, n\pi^0$	uds
Sigma	Σ^+	1189.4	1/2	+1	+1	-1	0.8 x 10 ⁻¹⁰	$p\pi^0, n\pi^+$	uus
Sigma	Σ^0	1192.5	1/2	0	+1	-1	6 x 10 ²⁰	$\Lambda^0\gamma$	uds
Sigma	Σ^{-}	1197.3	1/2	-1	+1	-1	1.5 x 10 ⁻¹⁰	$n\pi^-$	dds
Delta	Δ^{++}	1232	3/2	+2	+1	0	0.6 x 10 ²³	$p\pi^+$	иии
Delta	Δ^+	1232	3/2	+1	+1	0	0.6 x 10 ²³	$n\pi^+, \ p\pi^0$	uud
Delta	Δ^0	1232	3/2	0	+1	0	0.6 x 10 ²³	$n\pi^0$	udd
Delta	Δ^{-}	1232	3/2	-1	+1	0	0.6 x 10 ²³	$n\pi^-$	ddd
Xi	Ξ^0	1315	1/2	0	+1	-2	2.9 x 10 ⁻¹⁰	$\Lambda^0\pi^0$	USS
Xi	Ξ	1321	1/2	-1	+1	-2	1.64 x 10 ⁻¹⁰	$\Lambda^0\pi^-$	dss
Omega	Ω^{-}	1672	3/2	-1	+1	-3	0.82 x 10 ⁻¹⁰	$\Xi^0\pi^-, \ \Lambda^0K^-$	SSS

the dominant Mesons

Particle	Symbol	anti- particle	Rest Mass MeV/c ²	spin	Q	В	S	Lifetime	dominant decay modes	quark content
Pion	π^+	π^{-}	139.6	0	+1	0	0	2.6 x 10 ⁻⁸	$\mu^+ \nu_\mu$	$u ar{d}$
Pi-zero	π^0	π^0	135	0	0	0	0	920	2γ	$\frac{1}{\sqrt{2}}(u\bar{u}+d\bar{d})$
Kaon	K^+	K^{-}	493.7	0	+1	0	+1	1.24 x 10⁻ ⁸	$\mu^+ \nu_\mu, \pi^+ \pi^0$	$u\bar{s}$
K-short	K_S^0	K_S^0	497.7	0	0	0	+1	0.89 x 10 ⁻¹⁰	$\pi^+\pi^-, 2\pi^0$	$d\bar{s},s\bar{d}$
K-long	K_L^0	K_L^0	497.7	0	0	0	+1	5.2 x 10 ⁻⁸	$\pi^{\pm}\ell^{\mp}\nu_{\ell}$	$d\bar{s},s\bar{d}$
Eta	η^0	η^0	548.8	0	0	0	0	< 10 ⁻¹⁸	$2\gamma, \pi^+\pi^-\pi^0$	$u\bar{u}, d\bar{d}, s\bar{s}$
Eta-prime	η^0 '	η^0 '	958	1	0	0	0		$\pi^+\pi^-\eta$	$u\bar{u}, d\bar{d}, s\bar{s}$
Rho	ρ^+	ρ^{-}	770	1	+1	0	0	0.4 x 1023	$\pi^+\pi^-, 2\pi^0$	$u \bar{d}$
Rho-naught	$ ho^0$	$ ho^0$	770	1	0	0	0	0.4 x 1023	$\pi^+\pi^-$	$u \bar{u}, d \bar{d}$
Omega	ω^0	ω^0	782	1	0	0	0	0.8 x 1022	$\pi^+\pi^-\pi^0$	$u \bar{u}, d \bar{d}$
Phi	ϕ	ϕ	1020	1	0	0	0	20 x 10 ⁻²³	$K^+K^-, K^0\bar{K}^0$	$s \overline{s}$

6 bits of matter:

quarks are a part of reality

because we can

hit them individually

measure many properties of interactions and particles that are bang-on

scattering of an electron from a nucleus

slow electron, long wavelength photon

"sees" the whole nucleus

scattering of an electron from a nucleus

fast electron, medium-short wavelength photon

M

"sees" an individual proton in the nucleus

scattering of an electron from a nucleus

very fast electron, very-short wavelength photon

"sees" an individual quark in a proton or neutron That's how we became convinced in 1969 – the same sort of backwards scattering as Rutherford's

the messenger of the strong interaction

the Gluon

the glue that holds everything together

Predicted the existence of the Strong Messenger Particle: the **Gluon**

0000

my gluon

thing 1

they self-interact

a photon propagates the electromagnetic force...but it does not have an electric charge

the gluon propagates the strong force...and it DOES have a "strong charge"

This has significant consequences...almost magical

ah, but the gluon is odd

force of attraction for gluon fields

g

the further away you get, the **STRONGER** the quark-quark attraction is! fourth and fifth entries into your

table of primitive diagrams

the modern picture

of the elementary particle patterns

circa now

the lepton families...lepton "doublets"

and their interactions: 🗶 no, 🖌 yes.

leptons	$ u_e$	e	$ u_{\mu}$	μ	$ u_{ au}$	au
strong 0000 g	×	×	×	×	×	×
electromagnetic $\longrightarrow \gamma$	×		×		×	
weak MM W						
gravitational						

 $\begin{pmatrix} \nu_e \\ e^- \end{pmatrix} \quad \begin{pmatrix} \nu_\mu \\ \mu^- \end{pmatrix} \quad \begin{pmatrix} \nu_\tau \\ \tau^- \end{pmatrix}$

the modern picture

of the elementary particle patterns

circa now

the quark families...quark "doublets"

and their interactions: 🗶 no, 🖌 yes.

quarks	U	d	C	S	t	b
strong \mathcal{T}						
electromagnetic \sim						
weak \mathcal{W}						
gravitational						

shifting gears

the weak and electromagnetic forces are one.

"phase transitions"

not a subject of **Particle Physics**

we thought

but we stole a theory from materials scientists

when there has been a symmetry change, that's essentially the definition of a phase change: Pierre Curie

before: every direction is identical

think about a phase transition

what a physicist sees is a change of symmetry

after: now there are special directions

there are basically 2 kinds

1st Order nucleation

2d Order continuous

Boiling starts in various locations inside of liquid water

Other kinds of phase transitions happen uniformly throughout the substance.

you probably are mostly familiar with: freezing melting boiling

These "2nd Order," phase transitions are continuouseverywhere:

crystallization changes of density magnetism superconductivity superfluidity plasma transition electron gases Bose gases

ferromagnet

most familiarly:

iron

a

also:Co, Ni, Li gas

many compounds

If atoms are far apart...a quantum mechanical effect keeps the spins aligned, minimizing the electrostatic energy

if the atoms are attached to an Iron lattice... the spins can add up

that's a permanent ferromagnet

in 2 - dimensions

is he talking about phase transitions you're asking yourself?

4.2 K - liquifies 2.17 K - superfluid

a little model of an ideal ferromagnet

in one – dimension At a low temperature – like room temperature:

M is maximum

M, "magnetization": a measure of how magnetized

"ground state" – state of lowest energy –

when all electronic magnets are aligned

There is a high temperature – the "Curie Point":

then the "ground state" – state of lowest energy –

when all electronic magnets are random

M becomes zero

an

important difference

C

we say that the symmetry is "broken"

the energy level of the **hot ground state** is higher than the energy level of the cold ground state

between these two situations

M = 0

this often-told magnet story

evolves into the new story of MASS

quarks & leptons

proton masses

the only mathematical solution that made sense:

masses of all quarks, leptons, and messenger particles

= 0

until we stole the magnet story and rewrote it into our book

1967

http://www.mustangdreams.com/mdfastback.htm

1967

FRONT ROW (L to R)

MIDDLE ROW (L to R)

BACK ROW (L to R)

Randy Hundley, Ernie Banks.

1967 CHICAGO CUBS

Billy Williams, Ron Santo, Joe Amalfitano (Coach), Pete Reiser (Coach), Ken Kamin (Batboy), Leo Durocher (Manager), Verlon Walker (Coach), Jerry Farrell (Batboy), Joe Becker (Coach),

Blake Cullen (Traveling Secretary), Ferguson Jenkins, Clarence Jones, John Stephenson, Bill Stoneman, Ray Culp, Adolfo Phillips, Charles Hartenstein, Al Spangler, Norm Gigon, Ted Savage, Al Scheuneman (Trainer), Yosh Kawano (Equipment Manager).

Don Pinkus (Batting Practice Catcher), Jim Ellis, Ken Holtzman, Pete Mikkelsen, Glenn Beckert, Rich Nye, Bob Shaw, Don Kessinger, Lee Thomas, Joe Niekro, Bill Hands, Rob Gardner.

1967

http://www.mustangdreams.com/mdfastback.htm

http://nobelprize.org/nobel_prizes/physics/laureates/1979/weinberg-autobio.html

http://hacks.mit.edu/Hacks/by_year/2006

history was made

between **1967 - 2012**

http://www.elsevier.com/locate/physletb

VOLUME 19, NUMBER 21

PHYSICAL REVIEW LETTERS

¹¹ In obtaining the expression (11) t between the charged and neutral ¹²M. Ademollo and R. Gatto, ¹⁴(1966); see also J. Pasupath Phys. Rev. Letters <u>17</u>, 88 ¹³The predicted ratio [e from. to be

OVEMBER 1967

etters <u>8</u>,

A MODEL OF LEPTONS

Leptons interact o the intermediate bos diate weak interaction natural than to unite¹ th into a multiplet of gauge the way of this synthesis ar

ferences in the masses of the parameters in the masses of the parameters in the masses of the parameters may be imagining that the symmetries relating the weak and electromagnetic interactions are exact symmetries of the Lagrangian but are broken by the vacuum. However, this raises the specter of unwanted massless Goldstone bosons.^{*} This note will describe a model in which the symmetry between the electromagnetic and weak interactions is spontaneously broken, but in which the Goldstone bosons are avoided by introducing the photon and the intermediate-boson fields as gauge fields.^{*} The model may be renormalizable.

We will restrict our attention to symmetry groups that connect the <u>observed</u> electron-type leptons only with each other, i.e., not with muon-type leptons or other unobserved leptons or hadrons. The symmetries then act on a lefthanded doublet

 $L = \left[\frac{1}{2}(1+\gamma_5)\right] \begin{pmatrix} \nu e \\ e \end{pmatrix}$

Steven Weinberg† Nuclear Science and Phys ate of Technology, Camb aceived 17 October 3

(2)

(3)

At leaves invariant the kine- $\partial_{\mu}L - \overline{R} \gamma^{\mu} \partial_{\mu}R$ of the Lagrangthe electronic isospin \overline{T} acting numbers N_L , N_R of left- and

as we know, two of these symmetries are entirely unbroken: the charge $Q = T_3 - N_R - \frac{1}{2}N_L$, and the electron number $N = N_R + N_L$. But the gauge field corresponding to an unbroken symmetry will have zero mass,⁴ and there is no massless particle coupled to N,⁵ so we must form our gauge group out of the electronic isospin \vec{T} and the electronic hyperchange $Y = N_R$ $+ \frac{1}{2}N_L$.

Therefore, we shall construct our Lagrangian out of L and R, plus gauge fields \vec{A}_{μ} and B_{μ} coupled to \vec{T} and Y, plus a spin-zero doublet

whose vacuum expectation value will break \vec{T} and Y and give the electron its mass. The only renormalizable Lagrangian which is invariant under \vec{T} and Y gauge transformations is

$$= -\frac{1}{4} (\partial_{\mu} \vec{A}_{\nu} - \partial_{\nu} \vec{A}_{\mu} + g \vec{A}_{\mu} \times \vec{A}_{\nu})^{2} - \frac{1}{4} (\partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu})^{2} - \bar{R} \gamma^{\mu} (\partial_{\mu} - ig' B_{\mu}) R - L \gamma^{\mu} (\partial_{\mu} ig \vec{t} \cdot \vec{A}_{\mu} - i \frac{1}{2} g' B_{\mu}) L$$
$$- \frac{1}{2} (\partial_{\mu} \varphi - ig \vec{A}_{\mu} \cdot \vec{t} \varphi + i \frac{1}{2} g' B_{\mu} \varphi)^{2} - G_{\rho} (\bar{L} \varphi R + \bar{R} \varphi^{\dagger} L) - M_{1}^{2} \varphi^{\dagger} \varphi + h(\varphi^{\dagger} \varphi)^{2}.$$
(4)

(1)

We have chosen the phase of the R field to make $G_{\mathcal{C}}$ real, and can also adjust the phase of the L and Q fields to make the vacuum expectation value $\lambda = \langle \varphi^0 \rangle$ real. The "physical" φ fields are then φ^-

1264

We see immediately that the electron mass is λG_e . The charged spin-1 field is

$$V_{\mu} = 2^{-1/2} (A_{\mu}^{1} + iA_{\mu}^{2})$$
 (8)

20 NOVEMBER 1967

and has mass

PHYSICAL REVIEW LETTERS

 $(\varphi^0 - \varphi^{0\dagger})/i\sqrt{2}$. (5)

ero vacuum expecperturbation the-

and therefore the

, and φ^- have mass

that the Goldstone

d φ^- have no phys-

ian is gauge invarcombined isospin

sformation which where⁶ without chang-

see that G_e is very

be disregarded

night be very large,"

st to replace φ ev-

nain intact, while

 $+g'B_{\mu})^2 - \lambda G_{e} \overline{e} e.$ (7)

(6)

ectation value

comes

$$M_W = \frac{1}{2}\lambda g.$$
 (9)

The neutral spin-1 fields of definite mass are

$$Z_{\mu} = (g^{2} + g'^{2})^{-1/2} (gA_{\mu}^{3} + g'B_{\mu}), \qquad (10)$$

$$A_{\mu} = (g^2 + g'^2)^{-1/2} (-g' A_{\mu}^{\ 3} + g B_{\mu}). \tag{11}$$

Their masses are

$$M_Z = \frac{1}{2}\lambda (g^2 + g'^2)^{1/2},$$
 (12)

M_A=0, (13)

so A_{μ} is to be identified as the photon field. The interaction between leptons and spin-1 mesons is

H.c. +
$$\frac{igg'}{(g^2 + g'^2)^{1/2}} \bar{e} \gamma^{\mu} e A_{\mu}$$

+ $\frac{i(g^2 + g'^2)^{1/2}}{4} \left[\left(\frac{3g'^2 - g^2}{g'^2 + g^2} \right) \bar{e} \gamma^{\mu} e - \bar{e} \gamma^{\mu} \gamma_5 e + \bar{\nu} \gamma^{\mu} (1 + \gamma_5) \nu \right] Z_{\mu}.$ (14)

ed electric charge

g' ²) ^{1/2}	(15)
ouples as usual t il coupling const ven by	
$w^2 = 1/2\lambda^2$.	(16)

upling constant is $1/2 = 2.07 \times 10^{-6}$.

ons is stronger by a very weak. Note al-'larger than e, so BeV, while (12) gives

ew predictions made

by this model have to do with the couplings of the neutral intermediate meson Z_{μ} . If Z_{μ} does not couple to hadrons then the best place to look for effects of Z_{μ} is in electron-neutron scattering. Applying a Fierz transformation to the *W*-exchange terms, the total effective $e - \nu$ interaction is

$$\frac{G_W}{\sqrt{2}} p_{\gamma_\mu} (1+\gamma_5) \nu \left\{ \frac{(3g^2-g'^2)}{2(g^2+g'^2)} \overline{e} \gamma^\mu e + \tfrac{3}{2} \overline{e} \gamma^\mu \gamma_5 e \right\}.$$

If $g \gg e$ then $g \gg g'$, and this is just the usual $e \cdot \nu$ scattering matrix element times an extra factor $\frac{3}{2}$. If $g \simeq e$ then $g \ll g'$, and the vector interaction is multiplied by a factor $-\frac{1}{2}$ rather than $\frac{3}{2}$. Of course our model has too many arbitrary features for these predictions to be

1265

 $I_Z > M$ iv and $M_Z > 80$ BeV. The only uncouly call new

BeV, while (12) gives

interaction is multiplied by a factor - 1 rain er than 3. Of course our model has too man arbitrary features for these predictions to 1

inclus to make the vacuum expectation value $\lambda = \langle \varphi' \rangle$ real. The "physical" φ fields are the

1264

	, Z. Physik <u>88</u> , 161 (1934). A model similar to ours a discussed by S. Glashow, Nucl. Phys. <u>22</u> , 579
	(61); the chief difference is that Glashow introduces mmetry-breaking terms into the Lagrangian, and
	refore gets less definite predictions. J. Goldstone, Nuovo Cimento 19, 154 (1961); J. Gold-
	me, A. Salam, and S. Weinberg, Phys. Rev. 127,
	5 (1962). P. W. Higgs, Phys. Letters <u>12</u> , 132 (1964), Phys.
	v. Letters <u>13</u> , 508 (1964), and Phys. Rev. <u>145</u> , 1156 666); F. Englert and R. Brout, Phys. Rev. Letters
	, 321 (1964); G. S. Guralnik, C. R. Hagen, and T. W.
	Kibble, Phys. Rev. Letters <u>13</u> , 585 (1964). See particularly T. W. B. Kibble, Phys. Rev. 155,
	54 (1967). A similar phenomenon occurs in the
	roung interactions; the ρ-meson mass in zeroth-order rturbation theory is just the bare mass, while the
	meson picks up an extra contribution from the spon-
	seous breaking of chiral symmetry. See S. Weinberg, ys. Rev. Letters <u>18</u> , 507 (1967), especially footnote
	J. Schwinger, Phys. Letters <u>24B</u> , 473 (1967); Glashow, H. Schnitzer, and S. Weinberg, Phys. Rev.
	tters 19, 139 (1967), Eq. (13) et seq.
	T. D. Lee and C. N. Yang, Phys. Rev. <u>98</u> , 101 (1955). This is the same sort of transformation as that
	ich eliminates the nonderivative 7 couplings in the
	model; see S. Weinberg, Phys. Rev. Letters <u>18</u> , 188 567). The \$\overline{\pi}\$ reappears with derivative coupling be-
	ase the strong-interaction Lagrangian is not invari- i under chiral gauge transformation.
	For a similar argument applied to the σ meson, see
	inberg, Ref. 6. R. P. Feynman and M. Gell-Mann, Phys. Rev. 109,
	3 (1957).
	MIXING, AND LEPTON-PAIR
	A MESONS*
	1
	y, Upton, New York
	ai es and the Department of Physics.
	Chicago, Illinois
	er 1967)
	ce, the current-mixing model is shown
	All and a second
	and the second second
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	· · · · · · · · · · · · · · · · · · ·
20	

of particle physics

the story of the Higgs Boson a story about nothing.

This quickly became a story of a particular epoch in the early Universe which itself underwent a phase transition

48

Not in your average hunk of iron

the "system"? the enthative region to the whole enchilada

the phase transition?

everywhere in the Universe

there was a phase change in the entire Universe

at about 1 picosecond after the big bang

there were PRIMORDIAL fields and particles before (hot)

and different fields and particles after (cold)

С

we live in the resulting "cold" universe

***** like a regular magnet

M₁ ≠ 0

50

the big story of the Standard Model

is the story of mass.

elementary particle epoch

-9	-8	9	8	9	8	9	-9	-7	8	-8	8	-8	-9	7	-8	8	8	-2	-9
-8	-8	8	7	-9	8	-2	9	Ø	-9	-9	-8	Ø	8	8	7	-2	-8	-9	Ø
-8	-8	-8	8	9	9	-8	8	8	-2	-9	Ø	9	-8	8	8	7	8	9	-8
-8	9	9	-8	8	Ø	7	7	8	-9	-9	8	7	8	-2	9	-7	-8	-8	9
-9	9	-8	-8	9	Ø	7	8	-9	9	8	-8	8	9	-2	-7	-8	7	8	-8
8	8	-9	7	9	7	9	-2	-8	-2	8	-8	9	-8	7	-8	-8	9	-8	Ø
-8	-9	-9	Ø	-8	-9	-2	9	-8	9	Ø	-9	7	8	8	8	8	-2	8	9
8	7	Ø	9	9	-8	Ø	8	-9	-2	-7	9	8	8	-7	9	8	8	-2	Ø
7	8	7	9	-2	-9	9	8	-8	-9	7	-92	-2	8	-9	7	-9	9	-8	-9
-7	-9	9	-2	-8	-8	9	7	9	8	7	9	-8	-9	9	-8	-8	8	9	-8
-9	-9	7	9	-8	8	-9	8	-8	8	8	-8	Ø	8	7	-8	-2	-8	9	-7
-8	9	Ø	9	-8	-9	-8	Ø	-8	-9	Ø	9	9	-7	-2	8	9	-92	8	-9
8	-2	Ø	-8	8	-8	-9	-7	9	7	7	-9	-8	8	-8	7	9	-8	-92	7
-2	8	7	9	-8	-7	-8	-8	7	-92	9	-7	-8	-8	9	9	8	-92	-8	-7
9	7	-7	9	9	-9	-8	8	8	-92	8	-92	7	Ø	-9	8	-7	-9	8	-7
Ø	-8	Ø	8	7	-2	8	8	8	7	-8	-8	-9	-2	-8	9	-7	-7	-7	-8
-7	9	-8	-9	-9	-8	-2	8	-2	7	9	-2	7	9	-92	-7	9	-8	8	-9
-2	7	Ø	-2	-9	9	-8	-7	-8	-8	-2	-2	-2	8	-9	-2	-2	-7	Ø	8
8	-2	-9	-8	-8	9	-7	-7	7	7	-7	8	-9	-7	9	Ø	9	-8	8	7
-2	9	7	-8	Ø	8	7	-7	7	-8	-2	-2	8	9	-8	-92	9	-8	7	8
7	-8	8	7	-2	-2	9	-8	-8	9	9	-2	8	-2	9	8	Ø	7	-9	0
-9	9	-8	8	-7	-2	-8	-7	-9	-8	9	-2	-7	-7	8	7	9	-2	-7	7
-8	-9	9	8	-9	7	7	-7	8	Ø	7	9	8	-9	9	8	-7	-8	-8	8

-9	-9	Ø	8	-8	Ø	9	-7	
7	9	7	8	-8	7	-8	-7	
Ø	Ø	-8	9	8	9	8	-8	
-9	9	-9		-2	-9		-2	
-8	-7	-7		-8	-		-8	
-9	7	9	¥.	-8			8	
-2	8		e la	7		-8	9	
7	-8	8	-2	-8	-8	-8	-8	
-92	-9	8	8	-9	8	8	-92	
8	9	Ø	9	-7	7	-8	8	
-92	7	-7	-9	7	9	-9	Ø	
7	7	-8	9	-8	-7	-8	-9	
9	8	-9	-9	-8	9	9	9	
Ø	9	7	8	-8	-9	-8	-8	
9	7	-8	-8	-7	-2	-8	-9	
8	9	-9	-8	8	-7	9	7	
8	7	-7	7	-9	-8	-2	-8	
8	7	-2	-2	-9	9	-8	9	
-2	-9	8	-9	-9	-2	9	-7	
-8	-9	-9	-2	9	-2	-7	8	
8	7	-7	-9	-8	9	7	9	
-92	-9	8	8	-2	9	-8	-2	
9	-2	-8	Ø	Ø	-2	-8	-7	

elementary particle epoch

(after David Miller)

the hot universe: no Higgs Field

(after David Miller)

a cooled universe: Higgs Field

(after David Miller)

loud

quark-Tom-Izzo

quark-Tom-Izzo has gained inertia

mass

in the Higgs Field

The Higgs Boson is not just another particle.

more details now what's really in the model

68

the story of the Weak and Electromagnetic Fields

the unification of forces

full of the Higgs Field

70

- *a*⁰ 0**WW**
- *B*⁰ 0**W**
- *B*⁺ + **WW**

$$\phi \begin{pmatrix} + - - - - - - \\ 0 - - - - - \end{pmatrix}$$

$$\phi^* \begin{pmatrix} - - - - - - \\ 0 - - - - - \end{pmatrix}$$

The remaining primordial scalar is the Higgs Field.

t = the beginning 0 s

 $t = 10^{-12} s$

N

like a regular magnet

M₁ ≠ 0

3 of the primordial Higgs fields combine with 2 of the primordial messengers - and that gives them mass in the mathematics

what's this about?

messengers got fat

this is quite remarkable If the idea is right: the electromagnetic and weak forces ******* С M₁ ≠ 0 that are so different today like a regular magnet are actually a "cold-phase" of a single, unified force that existed only when the Universe was very, very hot Н

definite predictions

of Weinberg's model

- 0. The weak and electromagnetic interactions are two aspects of the same force
- 1. The W Boson should exist
- 2. An additional "Z Boson" should exist

Many physics reactions relate M_w to M_Z

3. This Z Boson and the γ are intimately related

any reaction with a photon, must also happen with a Z^0

4. The Higgs Boson should exist

particle:	W Boson	
	symbol:	W
	charge:	±1e
	mass:	80.399 ± 0.023 Ge
	spin:	1
	category:	weak Vector Bosc

$ieV/c^2 = 80.4 p$

on

particle:	Z Boson	
	symbol:	Ζ
	charge:	0
	mass:	91.1876 ± 0.0021
	spin:	1
	category:	weak Vector Bosc

GeV/c² = 91.2 p

on

Photon and Z always mix

Z, very weakly

3. The Z Boson and the γ are intimately related

any reaction with a photon, must also happen with a Z^0

very delicate effects observed in atomic systems due to the Z Boson

sixth and seventh entries into your table of primitive diagrams

Newtonian gravity

Copernicus/Kepler astronomy

electromagnetism 1875

strong force

electromagnetism

Standard Model

electroweak

we now think in terms of epochs in the stages of the early universe distinguished by phase transitions - stay tuned

81

"mass generation'

the holy grail of physics since Newton

what is mass?

Is "mass" an intrinsic attribute? "nature"?

or

Is "mass" an acquired trait?

"nurture"?

mass couplings? mass comes from the Higgs FIELD SM predicts from the hot phase:

 $\imath m$

 \mathcal{U}

find the Higgs particle

the process

confirmation of

Big Discovery July 4, 2012

watch the off-line movie:

https://qstbb.pa.msu.edu/storage/Extras 2017/HiggsDiscovery/

how to find the look for him! Higgs?

Share this: 2013

Photo: A. Mahmoud François Englert Prize share: 1/2

Photos: Copyright © The Nobel Foundation

The Nobel Prize in Physics 2013 François Englert, Peter Higgs

The Nobel Prize in Physics

Photo: A. Mahmoud Peter W. Higgs Prize share: 1/2

e Nobel Prize in Physics 2013 was awarded jointly to François ert and Peter W. Higgs "for the theoretical discovery of a hanism that contributes to our understanding of the origin of of subatomic particles, and which recently was confirmed ugh the discovery of the predicted fundamental particle, by the AS and CMS experiments at CERN's Large Hadron Collider"

of particle physics

definite predictions

of Weinberg's model

- 0. The weak and electromagnetic interactions are two aspects of the same force
- 1. The W Boson should exist
- 2. An additional "Z Boson" should exist

Many physics reactions relate M_w to M_Z

3. This Z Boson and the γ are intimately related

any reaction with a photon, must also happen with a Z^0

4. The Higgs Boson should exist

Weinberg, Salam, and Glashow 1979

Nobelprize.org

The Official Web Site of the Nobel Prize

Nobel Prizes

Alfred Nobel

1901

Home / Nobel Prizes / Nobel Prize in Physics / The Nobel Prize in Physics 1979

About the Nobel Prizes

Facts and Lists

Nobel Prize in Physics

All Nobel Prizes in Physics

Facts on the Nobel Prize in Physics

Prize Awarder for the Nobel Prize in Physics

Nomination and Selection of Physics Laureates

Nobel Medal for Physics

Articles in Physics

Video Interviews

Video Nobel Lectures

Nobel Prize in Chemistry

Nobel Prize in Physiology or Medicine

Nobel Prize in Literature

Nobel Peace Prize

Prize in Economic Sciences

Nobel Laureates Have Their Say

Nobel Prize Award Ceremonies

Nomination and Selection of Nobel Laureates

Sort and list Nobel Prizes and

Educational

The Nobel Prize in Physics 197

Nobel Prize Award Ceremony

Sheldon Glashow

Abdus Salam

Steven Weinberg

Sheldon Lee Glashow Abdus Salam

Prize in Physics and Stev d ele

al V	/ideo Player	Nobel Organization	Home A-		
ics 1979					
🖶 Printer Fr	iendly 🕂 Share	🖂 Tell a Friend	Q Comments		
		2012	◀ 1979 ▶		
rizes and Not	oel Laur 🗘	Prize category	Physics \$		
el Prize in Physics 1979 ashow, Abdus Salam, Steven Weinberg					
hysics 1979					
remony					
			Ψ.		
			Ψ.		
			T		

Steven Weinberg

arded jointly to Sheldon Lee Glashow, r contributions to the theory of the between elementary particles, neutral current".

the particle players

and

the "substrate"

Our "Periodic Table"

like any particle,

we predict and then search for its manifestation

through its decays

Your final entries into the Primitive Diagram collection

94

there are two other "issues"

the antimatter?

what the heck

is dark matter?

watch the off-line movie: https://qstbb.pa.msu.edu/storage/Extras 2017/DarkMatter/

the more pleasing

extension of the Standard Model

"supersymmetry"

every "Standard Model Particle"

has a super-partner

presumably much heavier

Searching for decades with every incremental increase in energy and luminosity. No evidence so far.

intriguing

for two big reasons

tames a SM Higgs mass problem*, "naturally"

*mass should be much higher

regular particles

SUSY particle that cannot decay

other many extensions

which unify forces and fix the infinities

add messenger particles

composite Higgs

composite quarks and leptons

"String Theory"...stop and start history in mathematics

The "infinities" in Relativistic Quantum Field Theory are related to extrapolation in spacetime to zero, x, y, z, = 0

Suppose there is a minimum length in Nature?

each wavelength...a different – e x t e n d e d – particle.

Plus: get a gravity and the graviton for free!

Point particle interaction

String interaction

100

....up to 10 space and 1 time dimensions.

high energy scale dimension(s) gravitational strength

world...gravity weak

Weak, EM, strong, int

<image>

Cosmology 5

"Steady State Universe"

eternal, matter created out of vacuum to maintain constant energy density...

"Big Bang Universe"

universe began at an instant

I lied: cyclic universe

over and over...bang and collapse - so eternal and a beginning

105

George Gamow

universe born

hot primordial soup

Fred Hoyle

steady state model, continuous creation of matter.

To Hoyle: the Big Bang implied a creator.

106

The recession of the galaxies does not give the only observational test that a theory of the expanding universemust satisfy. During the past few years astronomers have developed a number of further requirements. Although I don't wish to go into these in detail, I might mention that it is now possible to determine the ages of our own Galaxy and of several neighbouring galaxies with a substantial degree of accuracy. The result is about five thousand million years. A satisfactory theory must provide for this age, neither more nor less.

We not come to the question of applying the observational insts to earlier theories. These theories were based on the hypothesis that all the matter in the universe was created in one bigh bang at a particular time in the remote past. It now turns out that in some respect or other all such theories are in conflict with the observational requirements. And to a degree the can hardly be ignored. Investigators of this problem are like a party or containeers attempting an unclineed peak. Previoualy it had seemed as if the main difficulty was to decide between a <u>number of routes</u>, all of which seemed promising lines of ascent. But now we find that each of these routes peters out in seemingly hopeless precipices. A new way must be found. The new many way I am now going to discuss involves the hypothesis that matter is created continously.

How are the difficulties facing former theories overcome by introducing continuous creation of matter?

I cannot deal fully with this question, but perhaps you may like to hear one of many possible examples. According to the majority of the earlier theories the density of the matter which composes the background, the background which I've already described, must in the distant past, have been vastly greater than it is at present. This is an effect arising from the expansion, which in these theories produces a decrease of background density as we go forwards into the future but an

"Big Bang" was coined by Fred Hoyle in a

BBC radio broadcast for the general public in 1948

Big Bang cosmology is a form of religious fundamentalism ...and this is why these peculiar states of mind have flourished so strongly over the past quarter century. It is the nature of fundamentalism that it should contain a powerful streak of irrationality and that it should not relate, in a verifiable, practical way, to the everyday world. ...it would take an eternity of time to distill even one drop of sense...Big bang cosmology refers to an epoch that cannot be reached from any form of astronomy...

Home is Where the Wind Blows 1994.

Fred Hoyle <u>d Blows</u> 1994.

Sorry, Fred.

Here's the current understanding of the life of a Universe:

evolving in time and temperature.