hi

Day 28, 24.04.2018

Particle Physics 3 \& Cosmology 5

housekeeping

The end game: next slide
Particle Physics:

Readings: Oerter, Cosmic Horizons, and Hobson
Hobson_quantum_fields.pdf is chapter 17
Homework \#13 is: partly from MasteringPhysics - normal due date partly on paper...see the blog

Feynman Diagram rules
3 movies in the lecture slide directory - you'll need them for homework and the final
they are: primitiveDiagrams_X. mp4 where $X=0,1,2$

last $z 1$ weeks \& final

Homework \#13 will be assigned 4/21 and due 4/28 - normal rotation
On-line final exam will be assigned Sunday, 4/29 and due Tuesday night, May 1
will cover material since midterm plus the last week of class
There is 1 more 10 point quiz (stay tuned)...
only the shadow knows when...actually, watch the blog. Quiz up tomorrow, return Thursday in class.
Remember when I was sick?
been trying to catch up, but not going to make it. Hence:
Final Exam day:

1. You'll arrive at 0745 on May 4 , here. I know.
2. I'll provide bagels. You supply liquids.
3. We'll have a quiz.
4. I'll finish with about a 1 hour grand finale, lalapalooza, mind-bending lecture
5. You'll do your Feynman Diagram Project
6. There will be no poster project this year

sirs@msu.edu sirs@msu.edu

To: brockr@msu.edu brockr@msu.edu

To: RAYMOND L BROCK

From: sirs@msu.edu
Student Instruction Rating System (SIRS Online) collects student feedback on courses and instruction at MSU. Student Instructional Rating System (SIRS Online) forms will be available for your students to submit feedback during the dates indicated

ISP 220 001: 4/16/2018 - 5/16/2018
ISP 220 002: $4 / 16 / 2018-5 / 16 / 2018$

Direct students to https://sirsonline.msu.edu.
Students are required to complete the SIRS Online form OR indicate within that form that they decline to participate. Otherwise, final grades (for courses using SIRS Online) will be sequestered for seven days following the course grade submission deadline for this semester.

SIRS Online rating summaries are available to instructors and department chairs after 5/16/2018 at https://sirsonline.msu.edu. Instructors should provide copies of the rating summaries to graduate assistants who assisted in teaching their course(s). Rating information collected by SIRS Online is reported in summary form only and cannot be linked to individual student responses. Student anonymity is carefully protected.

If you have any questions, please contact Michelle Carlson, (mcarlson@msu.edu, (517)432-5936).

honors project began

https://qstbb.pa.msu.edu/storage/Homework_Projects/honors_project_2018/
contains:
the first instructions: the plan \& tutorial
the second instructions - v2 uploaded, added a missing student
the data, assigned by name in the second instructions - see next

dates:

complete first part, March 16
analyze data by April 24 and hand in complete writeup at the final exam

have
 I nded a Section 2

to test the Z-path uploading machinery and instructions
working on it. I'll be in touch via email.

here's what we've learned

There are three kinds of fields: messenger fields, quark fields, and lepton fields
oscillations - the particles - of quark fields are the constituents of protons and neutrons, but also hundreds of other "particles" that nature will produce
oscillations of lepton fields - electrons and the electron neutrino and the other two lepton pairs, round out "matter"

Messenger fields carry the four known forces from one particle to another

now the

jargon

Hadrons: particles made of quarks.

gets a little more straightforward

Mesons: particles made of 1 quark and 1 antiquark.
the primary baryons

like a glove

S

the dominant Baryons

Particle	Symbol	Rest Mass $\mathrm{MeV} / \mathrm{c}^{2}$	spin	Q	B	S	Lifetime	dominant decay modes	quark content
proton	p	938.3	1/2	+1	+1	0	$>10^{31} \mathrm{y}$		uud
neutron	n	939.6	1/2	0	+1	0	920	$p e^{-} \bar{\nu}_{e}$	$d d u$
Lambda	Λ^{0}	1115.6	1/2	0	+1	-1	2.6×10^{-10}	$p \pi^{-}, n \pi^{0}$	$u d s$
Sigma	Σ^{+}	1189.4	1/2	+1	+1	-1	0.8×10^{-10}	$p \pi^{0}, n \pi^{+}$	uus
Sigma	Σ^{0}	1192.5	1/2	0	+1	-1	6×10^{-20}	$\Lambda^{0} \gamma$	$u d s$
Sigma	Σ^{-}	1197.3	1/2	-1	+1	-1	1.5×10^{-10}	$n \pi^{-}$	$d d s$
Delta	Δ^{++}	1232	3/2	+2	+1	0	0.6×10^{-23}	$p \pi^{+}$	иии
Delta	Δ^{+}	1232	3/2	+1	+1	0	0.6×10^{-23}	$n \pi^{+}, p \pi^{0}$	uud
Delta	Δ^{0}	1232	3/2	0	+1	0	0.6×10^{-23}	$n \pi^{0}$	udd
Delta	Δ^{-}	1232	3/2	-1	+1	0	0.6×10^{-23}	$n \pi^{-}$	$d d d$
Xi	Ξ^{0}	1315	1/2	0	+1	-2	2.9×10^{-10}	$\Lambda^{0} \pi^{0}$	uss
Xi	$\Xi{ }^{-}$	1321	1/2	-1	+1	-2	1.64×10^{-10}	$\Lambda^{0} \pi^{-}$	$d s s$
Omega	Ω^{-}	1672	3/2	-1	+1	-3	0.82×10^{-10}	$\Xi^{0} \pi^{-}, \Lambda^{0} K^{-}$	Sss

the dominant Mesons

| Particle | Symbol | anti-
 particle | Rest
 MeV/c | spin | \mathbf{Q} | \mathbf{B} | \mathbf{s} | Lifetime | dominant decay
 modes | quark content |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pion | π^{+} | π^{-} | 139.6 | 0 | +1 | 0 | 0 | 2.6×10^{-8} | $\mu^{+} \nu_{\mu}$ | $u \bar{d}$ |
| Pi-zero | π^{0} | π^{0} | 135 | 0 | 0 | 0 | 0 | 920 | 2γ | $\frac{1}{\sqrt{2}}(u \bar{u}+d \bar{d})$ |
| Kaon | K^{+} | K^{-} | 493.7 | 0 | +1 | 0 | +1 | 1.24×10^{-8} | $\mu^{+} \nu_{\mu}, \pi^{+} \pi^{0}$ | $u \bar{s}$ |
| K-short | K_{S}^{0} | K_{S}^{0} | 497.7 | 0 | 0 | 0 | +1 | 0.89×10^{-10} | $\pi^{+} \pi^{-}, 2 \pi^{0}$ | $d \bar{s}, s \bar{d}$ |
| K-long | K_{L}^{0} | K_{L}^{0} | 497.7 | 0 | 0 | 0 | +1 | 5.2×10^{-8} | $\pi^{ \pm} \ell^{\mp} \nu_{\ell}$ | $d \bar{s}, s \bar{d}$ |
| Eta | η^{0} | η^{0} | 548.8 | 0 | 0 | 0 | 0 | $<10^{-18}$ | $2 \gamma, \pi^{+} \pi^{-} \pi^{0}$ | $u \bar{u}, d \bar{d}, s \bar{s}$ |
| Eta-prime | $\eta^{0 \prime}$ | $\eta^{0 \prime}$ | 958 | 1 | 0 | 0 | 0 | \ldots | $\pi^{+} \pi^{-} \eta$ | $u \bar{u}, d \bar{d}, s \bar{s}$ |
| Rho | ρ^{+} | ρ^{-} | 770 | 1 | +1 | 0 | 0 | 0.4×10^{-23} | $\pi^{+} \pi^{-}, 2 \pi^{0}$ | $u \bar{d}$ |
| Rho-naught | ρ^{0} | ρ^{0} | 770 | 1 | 0 | 0 | 0 | 0.4×10^{-23} | $\pi^{+} \pi^{-}$ | $u \bar{u}, d \bar{d}$ |
| Omega | ω^{0} | ω^{0} | 782 | 1 | 0 | 0 | 0 | 0.8×10^{-22} | $\pi^{+} \pi^{-} \pi^{0}$ | $u \bar{u}, d \bar{d}$ |
| Phi | ϕ | ϕ | 1020 | 1 | 0 | 0 | 0 | 20×10^{-23} | $K^{+} K^{-}, K^{0} \overline{K^{0}}$ | $s \bar{s}$ |

6 bits of matter:

$\binom{u}{d} \quad\binom{c}{s} \quad\binom{t}{b}$

quarks are a part of reality

because we can
hit them individually
measure many properties of interactions and particles that
are bang-on
scattering of an electron from a nucleus
slow electron, long wavelength photon

"sees" the whole nucleus
scattering of an electron from a nucleus
fast electron, medium-short wavelength photon

"sees" an individual proton in the nucleus
scattering of an electron from a nucleus
very fast electron, very-short wavelength photon
(e)

"sees" an individual quark in a proton or neutron
That's how we became convinced in 1969 -
the same sort of backwards scattering as Rutherford's

the

messenger

of the

 stronginteraction
the Gluon
the glue
that holds
everything together

Predicted the existence of the Strong Messenger Particle: the Gluon

0000
my gluon

thing 1

they self-interact

a photon propagates the electromagnetic force...but it does not have an electric charge

the gluon propagates the strong force...and it DOES have a "strong charge"

This has significant consequences...almost magical

ah, but the gluon is odd

fourth and fifth entries

 into your table of primitive diagramsPrimitive Diagrams

the

modern

picture

of the elementary particle patterns circa now
the lepton families...lepton "doublets"

$$
\binom{\nu_{e}}{e^{-}} \quad\binom{\nu_{\mu}}{\mu^{-}} \quad\binom{\nu_{\tau}}{\tau^{-}}
$$

and their interactions: \mathbf{X} no, $\boldsymbol{\checkmark}$ yes.

leptons	ν_{e}	e	ν_{μ}	μ	ν_{τ}	τ
$\begin{aligned} & \text { strong } \\ & \text { rong } \\ & \hline \end{aligned}$	x	x	x	x	x	x
wnu	x	\checkmark	\times	\checkmark	x	\checkmark
$W_{W}^{\text {meak }}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
gavitatonal	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

the

modern

picture

of the elementary particle patterns circa now
the quark families...quark "doublets"

$$
\binom{u}{d} \quad\binom{c}{s} \quad\binom{t}{b}
$$

and their interactions: \mathbf{X} no, $\boldsymbol{\checkmark}$ yes.

quarks	u	d	c	s	t	b
${ }_{\text {Strong }} \mathrm{m}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
electromagnetic WWW γ	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\begin{gathered} \text { wak } \\ \mathrm{WWW} W \end{gathered}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	,
Sutational	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

three
 forces now of vastly different strengths

 force 0.007

Weak force 0.000001

shifting gears

the weak and electromagnetic forces are one.

'"phase transitions"

not a subject of Particle Physics

we thought
but we stole a theory from materials scientists
think about a phase transition

what a physicist sees is a change of symmetry

there are basically
 2 kinds

1st Order nucleation

2d Order continuous

Boiling starts in various locations inside of liquid water

Other kinds of phase transitions happen uniformly throughout the substance.
you
probably

are mostly

familiar
with:
freezing
melting
boiling

These "2nd Order," phase transitions are continuouseverywhere:
crystallization
changes of density
magnetism
superconductivity
superfluidity
plasma transition
electron gases
Bose gases
a

ferromagnet

If atoms are far apart...a quantum mechanical effect keeps the spins aligned, minimizing the electrostatic energy

if the atoms are attached to an Iron lattice... the spins can add up
that's a permanent ferromagnet
in 2 - dimensions

$\uparrow \uparrow 1 \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$ $\uparrow \uparrow \uparrow$ $\uparrow \uparrow \uparrow$ $\uparrow \uparrow \mathcal{L} \Lambda \mathcal{L} \uparrow \uparrow \uparrow$

why

is he talking about phase transitions you're asking yourself?

$4.2 k$-liquifies
2.17 K - superfluid
a little model of an ideal ferromagnet
in one dimension

At a low temperature - like room temperature:

$\uparrow \uparrow \uparrow$
 \mathbf{M} is maximum

M, "magnetization": a measure of how magnetized
"ground state" - state of lowest energy when all electronic magnets are aligned

There is a high temperature - the "Curie Point":

then the "ground state" - state of lowest energy when all electronic magnets are random

M becomes zero

an

important

difference
between these two situations

H

temperature cools...magnet goes to one of two states:
C

we say that the symmetry is "broken"
when

the energy level of the hot ground state is higher than the energy level of the cold ground state

this often-told magnet story

evolves into the new story of MASS

the only mathematical solution that made sense:

masses of all quarks, leptons, and messenger particles

$$
=0
$$

until we stole the magnet story and rewrote it into our book

1967

http://www.mustangdreams.com/mdfastback.htm

between 1967－2012

\square history was made

宜雷曾
面面雷

between 1967-2012

 metro--breaking terence in into the Llashown introdsces
efore gets less definite pret, amd Coidstone, Noero Cimention 19,114 (1961); J. Colde, A Salam, and S . Weinberg, Phys. Rev. 127.
(1952). W. Higes, Phys. Letters $\frac{12,}{} 132$ (1964), Phys.
Wetters 13 , 508 (1964),

 (1957). A similar phenomenon occurs in the
ong interactioss; the ρ-mesom mass in zeroth-order
wrtation theory is just the bare mass, witile the
 reson pricks sp an entra cootribetion from the spoeous breaking of chiral symmetry. See S . Weinberg.
W. Rev. Letters 18,507 (1967), especially footnote

 odel; see 8 . Weinberg, Piyss. Rev. Letters 18,188
m . The F reappears with derivative coupling be--
 der chiral gauge transformation.
erg. Ref. 6 .
P. Feyman and M. Gell-Mann, Phys. Rev. 109 ,
(1957).
(1957).

MIXING, AND LEPTON-PARR
MESONS*
Upton, Nee York

stand the Departm

1967)
te, the curreet-mbxing model is shown
benormalizable.
Weups that connect the observed electrontry leptons only with each other, i.e., not with muon-type leptons or other unobserved lepto or hadrons. The symmetries then act on a lefthanded doublet

$$
L=\left[\frac{1}{2}\left(1+\gamma_{s}\right)\binom{\nu_{e}}{e}\right.
$$

\qquad and Y and give the election value will break $\overrightarrow{\mathrm{T}}$ ly renormalizable electron its mass. The only renormalizable Lagranglan which is invar-
iant under $\overline{\mathrm{T}}$ and Y gauge transformations is-

$$
-\frac{1}{2} \left\lvert\, \theta_{\mu} \varphi-i g \bar{A}_{\mu} \cdot \tau_{\varphi}+i \frac{1}{2} g^{\prime} B_{\mu} \varphi r^{2}-G_{e}\left(\bar{L} \varphi R+\bar{R}^{\dagger} \varphi^{\dagger} L\right)-M_{1}^{2} \varphi^{\dagger} \varphi+k\left(\varphi^{\dagger} \varphi\right)^{2} .\right. \text { (4) }
$$

We have chosen the phase of the R field to make G_{ρ} real, and can also adjust the phase of the L and Q fields to make the vacuum expectation value $\lambda=\left(\varphi \varphi^{\circ}\right)$ real. The "physical" φ fields are then φ^{-}

of particle physics
the story of the Higgs Boson a story about nothing.

This quickly became a story
of a particular epoch in the early Universe
which itself underwent a phase transition

Not in your average hunk of iron
the "system"?
the that's right. the whole enchilada
the phase transition?
everywhere in the Universe

there was a phase change in the entire Universe
at about 1 picosecond after the big bang
there were PRIMORDIAL fields and particles before (hot)
and different fields and particles after (cold)
we live in the resulting "cold" universe

$10^{-12} \mathrm{~s}$ after the big bang

 universe condensed: a phase change
the big story of the Standard Model
is the story of mass.

elementary particle epoch

elementary particle epoch

a Higgs metaphor

the hot universe: no Higgs Field

a cooled universe: Higgs Field

$$
\begin{array}{ccccc}
& 0 & 0 & \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}
$$

mass

was born
 in the Higgs Field

"rumor" travals: Higss Particle

So:

The Higgs Boson is not just another particle.

more details now
 what's really in the model

the story of the Weak and Electromagnetic Fields
the unification of forces

from a hot phase in the universe

 cool it all at once@ 10-12 seconds after the BB

temperature cools...magnet goes to one of two states:
c 11111111111111111111414

an important difference between these two situations
we say that the symmetry is "broken"

the hot ground state is higher than the cold ground state than the cold ground state

E (entire universe)

$a^{0} \quad$ OWW
Bo OMWM
$B^{+}+W M W$
B- - WWW
$\phi\binom{+------}{0------}$
$\phi^{*}\binom{-------}{0------}$
The remaining primordial scalar is the Hiogs Field.
$\mathrm{t}=$ the beginning 0 s

$$
t=10^{-12} s \quad t=10+18 s
$$

3 of the primordial Higgs fields combine with 2 of the primordial messengers - and that gives them mass in the mathematics

what's this

about?
messengers got fat

this is quite remarkable

If the idea is right:
the electromagnetic and weak forces
that are so different today
are actually a "cold-phase" of a single, unified force
"Electroweak Force"
that existed only when the Universe was very, very hot
definite predictions

0 . The weak and electromagnetic interactions are two aspects of the same force

1. The W Boson should exist
2. An additional " Z Boson" should exist
of Weinberg's model

Many physics reactions relate M_{w} to M_{z}
3. This Z Boson and the γ are intimately related
any reaction with a photon, must also happen with a Z^{0}
4. The Higgs Boson should exist
particle: W Boson
symbol:
charge:
mass:
spin:
category:
w
$\pm 1 e$
$80.399 \pm 0.023 \mathrm{GeV} / \mathrm{c}^{2}=80.4 \mathrm{p}$
1
weak Vector Boson
particle: Z Boson
symbol: Z
charge:
mass:
spin:
category:
$91.1876 \pm 0.0021 \mathrm{GeV} / \mathrm{c}^{2}=91.2 \mathrm{p}$
1
weak Vector Boson

Photon

and Z

always mix

Z, very weakly
3. The Z Boson and the γ are intimately related
any reaction with a photon, must also happen with a Z^{0}

very delicate effects observed in atomic systems due to the Z Boson

sixth and seventh

entries

into your

table of primitive diagrams

Primitive Diagrams TIME always:

Primitive Diagrams	TIME always: \longrightarrow	
		윰
	$w+2$	
	$w^{2}\left\{\begin{array}{l} 5 w \\ z^{\circ} \end{array}\right.$	

Copernicus/Kepler astronomy
magnetism
electricity
electromagnetism

General Relativity

strong force
quantum mechanics
relativity

weak force

electromagnetism

we now think in terms of
epochs in the stages of the early universe
distinguished by phase transitions - stay tuned

${ }^{6}{ }^{\mathrm{m}} \mathrm{mass}$

generation’’
the holy grail of
physics since
Newton
what is mass?

Is "mass" an intrinsic attribute? "nature"?
or
Is "mass" an acquired trait?
"nurture"?
mass couplings? mass comes from the Higgs FIELD

SM predicts from the hot phase:

f • Higgs field

find the Higgs particle

confirmation of the process

Big Discovery July 4, 2012

watch the off-line movie:

https://qstbb.pa.msu.edu/storage/Extras_2017/HiggsDiscovery/

how to find the look for him!

 Higgs?

of particle physics
definite predictions

0 . The weak and electromagnetic interactions are two aspects of the same force

1. The W Boson should exist
2. An additional " Z Boson" should exist
of Weinberg's model

Many physics reactions relate M_{w} to M_{z}
3. This Z Boson and the γ are intimately related
any reaction with a photon, must also happen with a Z^{0}
4. The Higgs Boson should exist

Weinberg,

Salam,

and

Glashow

 1979
Nobelprize.org

The Official Web Site of the Nobel Prize
Home A_{-}
Nobel Prizes \quad Alfred Nobel Educational Video Player Nobel Organizations

Home / Nobel Prizes / Nobel Prize in Physics / The Nobel Prize in Physics 1979

About the Nobel Prizes
Facts and Lists
D Nobel Prize in Physics All Nobel Prizes in Physics
Facts on the Nobel Prize in Physics

Prize Awarder for the Nobel Prize in Physics

Nomination and Selection of Physics Laureates

Nobel Medal for Physics
Articles in Physics
Video Interviews
Video Nobel Lectures
Nobel Prize in Chemistry
Nobel Prize in Physiology or Medicine

Nobel Prize in Literature
Nobel Peace Prize
Prize in Economic Sciences
Nobel Laureates Have Their Say
Nobel Prize Award Ceremonies
Nomination and Selection of Nobel Laureates

Brinter Friendly	(7) Share	\square Tell a Friend	Q Comments		
1901		2012 1979			
Sort and list Nobel Prizes and Nobel Laur	\pm	Prize category: Physics			$\stackrel{*}{*}$

The Nobel Prize in Physics 1979
Sheldon Glashow, Abdus Salam, Steven Weinberg

The Nobel Prize in Physics 1979	v
Nobel Prize Award Ceremony	$\mathrm{\nabla}$
Sheldon Glashow	$\mathrm{\nabla}$
Abdus Salam	v
Steven Weinberg	$\mathrm{\nabla}$

Sheldon Lee Glashow Abdus Salam

the particle players and the "substrate"

like any particle,

we predict and then search for its manifestation
through its decays
Your final entries into the Primitive Diagram collection

there are two other "issues"

where's

the antimatter?

what the heck

is dark matter?

watch the off-line movie: https://qstbb.pa.msu.edu/storage/Extras_2017/DarkMatter/

the more

pleasing

extension of the Standard Model
"supersymmetry"

every "Standard Model Particle"
has a super-partner
presumably much heavier

Searching for decades with every incremental increase in energy and luminosity. No evidence so far.

intriguing

 for two big reasonstames a SM Higgs mass problem*, "naturally"

*mass should be much higher
many other extensions
which unify forces and fix the infinities
add messenger particles composite Higgs composite quarks and leptons
"String Theory"...stop and start history in mathematics
The "infinities" in Relativistic Quantum Field Theory are related to extrapolation in spacetime to zero, $x, y, z,=0$

Suppose there is a minimum length in Nature?

each wavelength...a different-extended - particle.
Plus: get a gravity and the graviton for free!

pretty:

Cosmology 5

FLRW catalogue of Universes $\Lambda>0$

thy x^{e}
 tyo opposing views

"Steady State Universe"
eternal, matter created out of vacuum to maintain constant energy density...
"Big Bang Universe"

universe began at an instant

I lied: cyclic universe

George
 Gamow

universe born

hot primordial soup

Fred
Hoyle
steady state model, continuous creation of matter.

To Hoyle: the Big Bang implied a creator.

"Big Bang"

was coined

by Fred

Hoyle in a

BBC radio broadcast for the general public in 1948

The recession of the galaxies does not give the oriy observational teat that a theory of the expanding univorsemust satisfy. During the past few years astronomers have doveloped a number of further requirenenta. Although I don't wish to go Into these in detail, I might mention that it is now possible to determine the ages of our own Galaxy and of several nelghbouring galaxies with a aubstantial degree of accuracy. The rosult is about five thousand million years. A aatisfactory theory must provide for thia age, neither more nor less.

We ne. coric to the question of applying the obsoltational hypothesis that all the matter in the universo was oroated in one bigh bang at a particular time in the remote past. It now tums out that in some respect or othor all such theories aro in confliot with tho obsorvational requirementa. And to a degree
com hardly be ignored. Investigators of this problem n
 Previounly it had seomed as if the main dipficulty was to deeide between a number of routes, all of which seemed promising lines of ascent. But now we find that each of these routes peters out in seemincly hopeloss precipices. A new way must be found. The now suxse way I am now going to discuss involves the hypothesis that matter is created continously.

How are the difficulties focing former theories overcome by introduoing continuous creation of matter?

I cunnot donl fully with this question, but perhaps you may like to hear one of many possible examples. According to the majority of the ourlier theories the density of the matter whioh composes the background, the background whioh I've already described, must in the distant past, have been vastly greater than it is at present. This is on effect arising from the expansion, which in these theories produces a decresse of backgroind density as we go forwards into the future but an

Big Bang cosmology is a form of religious fundamentalism ...and this is why these peculiar states of mind have flourished so strongly over the past quarter century. It is the nature of fundamentalism that it should contain a powerful streak of irrationality and that it should not relate, in a verifiable, practical way, to the everyday world. ...it would take an eternity of time to distill even one drop of sense...Big bang cosmology refers to an epoch that cannot be reached from any form of astronomy...

Fred Hoyle
Home is Where the Wind Blows 1994.

Sorry, Fred.

Here's the current understanding of the life of a Universe:
evolving in time and temperature.

