hi

Day 23, 05.04.2018

Quantum Mechanics 2

housekeeping

Gotta come to class
question about anything? I'll make a movie for you:
Quantum Mechanics:

Readings: Oerter, Cosmic Perspective, and Hobson
Hobson_QM1.pdf \& Hobson_QM2.pdf are chapters 12 \& 13 out of Hobson Homework \#10 is part from MasteringAstronomy and part from MasteringPhysics

honors project began

https://qstbb.pa.msu.edu/storage/Homework_Projects/honors_project_2018/
contains:
the first instructions: the plan \& tutorial
the second instructions
the data, assigned by name in the second instructions

dates:

complete first part, March 16
analyze data and complete writeup, April 22

just some facts, Ma'am

maximum height of the disturbance: "Amplitude," A. "Intensity" is ~ A^{2}

time to repeat: "Period," T. seconds rate of repetition: "Frequency," f. $(\mathrm{Hz}) \quad f=\frac{1}{T}$
distance
distance through which it repeats: "Wavelength," $\lambda \mathrm{m}$

$$
v=\frac{\lambda}{T} \quad v=\lambda f
$$

wave speeds

for sound in regular room temperature air?
about 300ish m/s: so about 30 ms to hear me in the back row
for light...anywhere?

$$
\begin{aligned}
& \mathrm{V}=\mathrm{C}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& v=\lambda f \rightarrow c=\lambda f
\end{aligned}
$$

for us, two kinds

traveling waves
the disturbance translates
standing waves
the disturbance marches in place

Quantum Mechanics

make your fingers think

Black Body Radiation

refers to:
entomology:
example:

A thermal absorber that perfectly absorbs all wavelengths of EM radiation and emits according to its temperature
"black" in the sense of a perfect absorber...no reflection

A cavity with a hole, a near-black object, a star...

Planck's Law

 refers to:$E=h f$
Energy of radiation comes in a discrete amount for each frequency
example: photoelectric effect

Planck's Constant, h

value:
units:
usage:
$h=6.62606896(33) \times 10^{-34} \mathrm{~J}-\mathrm{sec}$
Energy - time everything at atomic and smaller sizes

Einstein said:

Planck's bundles are not about the walls...the radiators

It is a statement about light (electromagnetism)
in that famous 1905 year

Light is itself "quantized"as particles:
these particles are called:
"photons," γ
they have no mass

light particle energies

$E=h f \quad$ the lower the frequency \quad the lower the energy
the higher the energy the higher the frequency

$$
E=\frac{h c}{\lambda} \quad \begin{aligned}
& \text { the larger the wavelength } \\
& \text { the lower the energy } \\
& \text { the higher the energy the smaller the wavelength }
\end{aligned}
$$

photoelectric effect

everywhere:
photodiodes
smoke detectors, $C D$ players, remote controls...
photocells
packed into "pixels" and arrays of pixels:

CCDs (charged coupled devices)

particle: photon, γ
symbol: $\quad \gamma$
charge:
mass:
spin:
category:
an intermediate vector boson, a messenger particle

Compton

scattering

Space diagram

$$
\gamma+e \rightarrow \gamma^{\prime}+e^{\prime}
$$

$\gamma+e \rightarrow \gamma^{\prime}+e^{\prime}$

Compton

 scatteringaka, Feynman diagram

spacetime diagram

$$
\gamma+e \rightarrow \gamma^{\prime}+e^{\prime}
$$

this reaction will get a technical modification later
draw the Feynman diagram for Compton Scattering

the

definitive

proof that
light acts
like
a particle.

How is that possible?

Particles come in whole sizes - no parts, no fractions.

Remember what "makes" a wave...

Waves interfere with one another.

What makes wave behavior in your life?

How about hearing around corners?

Stay tuned...as it will become weird.

the wavelength is the key

look at the relative sizes of openings and barriers
compared to the wavelength

First, think about water waves, then about light waves.

imagine two shapes of waves
 on water

waves

one tap
solid- crest
dashed - trough

interfere

nce

two taps
"node": a trough
"crest": a peak

this is it

THE smoking gun of wave behavior: interference

keep those in mind

a plane

a gap of about a wavelength-width

wave

impinging
 plane waves

on a gap like 1 "tap"

This is diffraction
...the bending of the wave around the opening.

Another smoking gun of wave-behavior (as opposed to particle behavior)

dramatic

images
 from oceans

now we know the answer

about hearing around corners
wavelength of sound? about 1m
middle C, $f=256 \mathrm{~Hz}$
which is about door-sized

look at

 it from:the side where the waves are coming at you

the

relative size of the gap determine the apparent diffraction amount
increasing gap relative to wavelength

this is for water

close to the slits

for light...many, many wavelengths away from the slits...stuff happens
diffraction with light
like that of water wave height like brightness

light appears all across the projected width of the gap
crest: bright
trough: dark

now do something strange.

add light by opening another gap

interference of light

and diffraction at the same time

bottom line:

waves interfere...and they bend - they creep around edges
that's diffraction
particles don't do this!

yet, Einstein suggested that waves and particles are spookily connected together in one object - a particle of light
how's that work?

here's the

 connectionbetween the wave nature and the particle nature of light

the wave point of view:
Intensity $\propto|\vec{E}|^{2}$
the particle point of view:
Intensity $\propto N h f$

intensity, or power
number of photons
~1015 $\mathrm{\gamma} / \mathrm{s}$

here's

how it

works

let light go
through a double slit
but sensitively count individual photons

$11,60 \mathrm{msec}$

So, here we go.
Quantum strangeness in action.
light behaves like a wave and light behaves like a particle

rewind a bit

to the beginning of Nuclear Physics
remember when we last saw the beginnings of radioactivity

Becquerel's adventures in cloudy Paris

Marie and Pierre Curies' isolation of Polonium and Radium
it was clear that matter could fall apart..."decay"

1899

The epitome of the aggressive scientist...
but I mean that in a good way.

Ernest Rutherford

1871 - 1937
the nuclear physics' 800 lb gorrilla

I have to keep going, as there are always people on my track. The best sprinters in this road are Becquerel and the Curies.

He measured the actual current from radioactive decays.

1899: he carefully isolated 2
components of radiation:
one stopped by thin aluminum
one highly penetrating and one more
neutral
gamma rays

Helium nuclei

beta particles,

iargon alert: $\quad \beta$ (old name for an electron)
refers to:
the emission of an electron in the decay of some nuclei - beta decay
entomology: alpha, beta,...
example:
Carbon-14 \rightarrow Nitrogen-14 +e

alpha particles, α

jargon alert:
(old name for a Helium nucleus) refers to: the emission of a Helium nucleus in decay of some nuclei - alpha decay
entomology:
example: alpha, beta,...

Uranium-238 \rightarrow Thorium-234 + e

Nobel

Prize in

Chemistry

1908

which greatly amused him

and went on

to do his best work after his Nobel...very unusual

Nobelprize.org

The Official Web Site of the Nobel Prize \quad Home \mid A-Z Index \mid FAQ \mid Press \mid Contact Us
Nobel Prizes
Alifed Nobel
Home /Nobel Prizes / Nobel Prize in Chemistry / The Nobel Prize in Chemistry 1908

About the Nobel Prizes
Facts and Lists
Nobel Prize in Physics
Nobel Prize in Chemistry
All Nobel Prizes in Chemistry
Facts on the Nobel Prize in
Chemistry
Prize Awarder for the Nobel
Prize in Chemistry
Prize in Chemistry
Nomination and Selection of
Chemistry Laureates Chemistry Laureates
Nobel Medal for Chemistry
Nobel Prizes in Organic
Nobel Prize
Chemistry
Videos about Chemistry
Video Nobel Lectures
Articles in Chemistry
Nobel Prize in Medicine Nobel Prize in Literature Nobel Peace Prize Prize in Economic Sciences Nobel Prize Award Ceremonies

The Nobel Prize in Chemistry 1908 Ernest Rutherford

The Nobel Prize in Chemistry 1908 was awarded to Ernest Rutherford "for his investigations into the disintegration of the elements, and the chemistry of radioactive substances"

Photos: Copyright © The Nobel Foundation

TO CITE THIS PAGE:
MLA style: "The Nobel Prize in Chemistry 1908". Nobelprize.org. 8 Feb 2011 http///nobelprize.org/nobeLprizes/chemistry/haureates/i $1908 /$

finally, 1918

Planck got his due

Nobelprize.org
 The Official Web Site of the Nobel Prize

Nobel Prizes

Alifred Nobel

Educational
Video Player

Nobel Organizations
Home | A-Z Index | FAQ | Press | Contact Us
e / Nobel Prizes / Nobel Prize in Physics / The Nobel Prize in Physics 1918
About the Nobel Prizes
Facts and Lists
Dobel Prize in Physics
All Nobel Prizes in Physics Facts on the Nobel Prize in Physics
Prize Awarder for the Nobel Prize in Physics
Nomination and Selection of Physics Laureates
Nobel Medal for Physics Articles in Physics
Video Interviews
Video Nobel Lectures
Nobel Prize in Chemistry
Nobel Prize in Physiology or Medicine
Nobel Prize in Literature
Nobel Peace Prize
Prize in Economic Sciences
Nobel Laureates Have Their Say
Nobel Prize Award Ceremonies
Nomination and Selection of Nobel Laureates

The Nobel Prize in Physics 1918 Max Planck
The Nobel Prize in Physics 1918 Max Planck

Max Karl Ernst

Ludwig Planck
The Nobel Prize in Physics 1918 was awarded to Max Planck "in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta".

Max Planck received his Nobel Prize one year later, in 1919. During the selection process in 1918, the Nobel Committee for Physics decided that none of the year's nominations met the criteria as outlined in the will of Alfred Nobel. According to the Nobel Foundation's statutes, the Nobel Prize can in such a case be reserved until the following year, and this statute was then applied. Max be reserved until the following year, and this statute was then applied. Max
Planck therefore received his Nobel Prize for 1918 one year later, in 1919.

Photos: Copyright © The Nobel Foundation

TO CITE THIS PAGE:
MLA style: "The Nobel Prize in Physics 1918". Nobelprize.org. 14 Mar 2013 http://www.nobelprize.org/nobel_prizes/physics/laureates/1918/

Max Planck, 1916

On nominating Einstein for membership in the Prussian Academy of Sciences:
"That he may sometimes have missed the mark in his speculations, as for example in his hypothesis of light quanta, cannot really be held too much against him. For it is not possible to introduce fundamentally new ideas, even in the most exact sciences, without occasionally taking a risk."

finally

the 1921 prize, given in 1922

not the Nobel's finest hour.

Nobelprize.org
The Official Web Site of the Nobel Prize

Nobel Prizes	Alfred Nobel	Educational	Video Player	Nobel Organizations		Search \rightarrow

About the Nobel Prizes	的Printer Friendly	(Share	\square Tella ariend	Q Comments
Facts and Lists	1901		2012	
Nobel Prize in Physics All Nobel Prizes in Physics	Sort and list Nobel Prizes and Nobel Lau		Prize category	(4) 1921

All Nobel Prizes in Physics Facts on the Nobel Prize in Physic
Prize Awarder for the Nobel
Prize in Physics
Nomination and Selection of
Physics Laureates
Physics Laureates
Nobel Medal for Physics
Articles in Physics
Video Interviews
Video Nobel Lectures
Nobel Prize in Chemistry
Nobel Prize in Physiology or
Medicine
Nobel Prize in Literature
Nobel Peace Prize
Prize in Economic Sciences Nobel Laureates Have Their Say Nobel Prize Award Ceremonies Nomination and Selection of Nobel Laureates

The Nobel Prize in Physics 1921 Albert Einstein
The Nobel Prize in Physics 1921
Albert Einstein

Albert Einstein
he Nobel Prize in Physics 1921 was awarded to Albert Einstein "for his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect"
Albert Einstein received his Nobel Prize one year later, in 1922. During the election process in 1921, the Nobel Committee for Physics decided that none of the year's nominations met the criteria as outtined in the will of Alfred Nobel. accordng lil Einstoin therefore received his Nobel Prize for 1921 one year later, in 1922.

Photos: Copyright © The Nobel Foundation

O CITE THIS PAGE:
MLA style: The Nobel Prize in Physics 1921. Nobelprize.org.

so where are we, circa 1910 or so?

the electron appears to exist and so do atoms
matter is falling apart - spontaneously, and randomly
into 3 distinct kinds of "rays"
light appears to be wave-like and particle-like

He had the

 solution
after 2 years

of work

he found:

1911: that the Atomic Number was +Ze
and made a model of the atom...

JJ Plum pudding...smear of positive charge - tiny individual deflections

the Rutherford Model of the atom:

Matter consists of hard-cores of positive charge.

The nucleus. This matched his alpha-scattering data.
The electrons? Somewhere around the outside?

In 1913 Bohr simply asserted

That at atomic distances...
there are electron orbits that simply don't radiate - "stationary states"
fixed "quantized" orbital radii and orbital velocities

Niels Bohr

1885-1962
a talker.

the magic of Bohr's model:

the idea of an atomic transition

The idea: transition of electrons results in the released energy of a photon...of a particular energy

imagine

 his
surprise

1913: his way.

$$
\begin{aligned}
& E_{2}-E_{1}=(13.6 \mathrm{eV})\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)=h f \\
& E_{2}-E_{1}=10.1 \mathrm{eV} \longrightarrow \lambda=122 \mathrm{~nm}
\end{aligned}
$$

\leftarrow Increasing Frequency (v)

hydrogen, fine

how about more complex elements?

Higher atomic

 number, Z?
lots of electrons, but as long as there's one lone one..the Bohr Formula still works.

Go looking for new elements....

Nobelprize.org
The Official W

actually with Einstein's delayed prize

About the Nobel Prizes		Brinter Friendly	(Share	\square Tell a Friend	Q Comments		
Facts and Lists	1901			2012			
D Nobel Prize in Physics All Nobel Prizes in Physics	Sort and list Nobel Prizes and Nobel Laur			Prize category: \square Physics			

All Nobel Prizes in Physics
Facts on the Nobel Prize in Physics
Prize Awarder for the Nobel Prize in Physics
Nomination and Selection of Physics Laureates Nobel Medal for Physics Articles in Physics
Video Interviews
Video Nobel Lectures
Nobel Prize in Chemistry
Nobel Prize in Physiology or
Medicine
Nobel Prize in Literature
Nobel Peace Prize
Prize in Economic Sciences
Nobel Laureates Have Their Say
Nobel Prize Award Ceremonies
Nomination and Selection of Nobel Laureates

The Nobel Prize in Physics 1922
Niels Bohr
The Nobel Prize in Physics 1922
Niels Bohr

Niels Henrik David
Bohr
The Nobel Prize in Physics 1922 was awarded to Niels Bohr "for his services in the investigation of the structure of atoms and of the radiation emanating from them"

Photos: Copyright © The Nobel Foundation

TO CITE THIS PAGE:
LA style: "The Nobel Prize in Physics 1922". Nobelprize.org. 14 Mar 2013 http://www.nobelprize.org/nobel_prizes/physics/laureates/1922

then

it got strange

quantum idea of electrons

Prince Louis de Broglie

His 1922 PhD thesis:
"The French Comedy"
must have been disconcerting

The Prince looking self-satisfied

the quantum idea:

made use of integers
so do waves

a

standing

wave

uses integers

3

Suppose the integer's in Bohr's formula...had to do with standing waves? Wrapped around a circle?

Following Bohr:

 photonsundeniably wave and particle-like
in atoms they involve integers directly.
hmmm, thought the Prince
One other thing involves integers

standing waves

Remember the total energy relation?

well

$$
E_{T}^{2}=\left(m c^{2}\right)^{2}+(p c)^{2}
$$

In which objects with $\mathbf{m}=\mathbf{0}$ have energy:

$$
E=p c
$$

go from photons to matter...!
rearrange... $\quad p=\frac{E}{c}$

use the Planck relation for E :

$$
p=\frac{h f}{c}=\frac{h}{\lambda}
$$

Pretend that this Photon-inspired, standing wave idea works for electrons of momentum p.

Electrons with a wavelength!

the

momentum

of an
 electron

 related to the wavelength of an electronthe wavelength of an electron??

$$
p=\frac{h f}{c}=\frac{h}{\lambda}
$$

now, a relation for an electron!

deBroglie guessed that the Bohr quantum number was related to the number of standing waves of the electron around the nucleus
photons:

> electrons:

$$
\begin{aligned}
\lambda_{\gamma}=\frac{h}{p_{\gamma}} & \lambda_{e}
\end{aligned}=\frac{h}{p_{e}}, \begin{aligned}
\lambda_{e} & =\frac{h}{m_{e} v}
\end{aligned}
$$

that was deBroglie's hypothesis
electrons are particles and waves
his PhD examination committee was so scandalized
they actually asked Einstein for advice

Who said: "sounds good to me."
this relation will be important
relating the wavelength of a quantum object
to its momentum
"deBroglie relation"

$$
\lambda=\frac{h}{p}
$$

particles as waves?

deBroglie suggested how:
they should exhibit diffraction

1927

Davisson \& Germer

JAUME NAVARRO
0.071 nm X-ray diffraction on a polycrystal

,

600 Ev electron diffraction on a polycrystal

0.057 ev neutron diffraction on a polycrystal

JJ's son GP

Nobelprize.org

Home / Nobel Prizes / Nobel Prize in Physics / The Nobel Prize in Physics 1937

JJ got the Nobel for showing that the electron exists and is a particle

 GP got the Nobel for showing that the electron is a waveGermer lost out

Nobel rules: 3 people.

in one

 pictureboth the particle like features of electrons

the dots
and the wavelike features of electrons
the diffraction pattern

photons!

sole

winner

1929

Nobelprize.org

Abore Nobel Prizes / Nobel Prize in Physics / The Nobel Prize in Physics 1929

Nobel Prize in Physics All Nobel Prizes in Physics Facts on the Nobel Prize in Physics
Prize Awarder for the Nobel ize in Physics
Nomination and Selection of hysics Laureates Nobel Medal for Physics Articles in Physics
Video Interviews
Video Nobel Lectures
Nobel Prize in Chemistry
Nobel Prize in Physiology or
Medicine
Nobel Prize in Literature
Nobel Peace Prize
Prize in Economic Sciences
Nobel Laureates Have Their Say
Nobel Prize Award Ceremonies
Nomination and Selection of
Nobel Laureates

的PPrinter Friendly	(Share	\square Tell a Friend	Q Comme
1901		2012	
fort and list Nobel Prizes and Nobel Lawr		Prize categor	(4) 1929

149 The Nobel Prize in Physics $1929_{\text {Louis de Broglie }}$
The Nobel Prize in Physics 1929
Nobel Prize Award Ceremony
Louis de Broglie

Prince Louis-Victo Pierre Raymond de Broglie
The Nobel Prize in Physics 1929 was awarded to Louis de Broglie "for his discovery of the wave nature of electrons".

Photos: Copyright © The Nobel Foundation

get real

I weigh 200 lbs \& I walk 5 mph

$$
\begin{aligned}
p & =\frac{h}{\lambda} \\
\lambda & =\frac{h}{m v}=3 \times 10^{-36} \mathrm{~m}
\end{aligned}
$$

what's my wavelength?

Smaller than the nucleus...My waviness doesn't show.

Why is it so small?

Two reasons:

1. My momentum is huge, downstairs
2. Planck's Constant is tiny

Quantum Mechanics born of some anxiety

the lack of radiation of Bohr's accelerating electrons was still a problem: Bohr knew it and figured there would be a more complete answer.
what in the world is an electron in deBroglie's scheme?

There was mudh that was ad hoc and not believable both in Bohr's approach and deBroglie's
however, the experimental situation made it clear that the broad suppositions of both had to be a part of the truth.
Quantum Mechanics, proper was the child of $3+1$ people:
Werner Heisenberg - 1925; invention \#1
Erwin Schrödinger - 1926; invention \#2
Paul Dirac - 1925; showed \#1 and \#2 are equivalent
Max Born - 1926; gave the modern interpretation

the breakthrough

from an unlikely source
Erwin Schrödinger

Erwin Schroedinger 1887-1961
where do you look for your keys in the dark?

Schroedinger was an expert

in the mathematics of waves
EM waves, material waves, fluids, elastic media, sound...

the quantum idea:

made use of integers

so do complicated waves

integers again

$u(r, t)=\sum_{m=0}^{m=\infty} \sum_{k=0}^{k=\infty}\left[\left(A_{m k} \cos \omega_{m k} t+B_{m k} \sin \omega_{m k} t\right) \cos \theta+\left(A_{m k} \cos \omega_{m k} t+B_{m k} \sin \omega_{m k} t\right) \sin \theta\right] J_{m}\left(\frac{\omega_{m k} r}{v}\right)$
Solutions for the vibrations of a drumhead, or a violin string, or that vibrating hoop...
Forget the details...just notice the mixing of lots of waves...the m's and k's? Integers.
Here are some of these infinite modes of vibration as described by some of the functions (white and brown are moving in opposite directions (the drum is clamped down at the edges)

these are both $\mathrm{m}=0$ modes

these are both $\mathrm{m}=1$ modes

Schroedinger "solved" a drum-head-like equation for the hydrogen atom

Discrete, vibrational modes...of a something.

terrific

what's waving???

However, he was in for a surprise -

Brave guy: worked in the alps over Christmas 1925 with his girlfriend while his wife stayed in Zurich.

The surprise, is that the mathematics required that the state of such a system had to be

```
IDOQgingry!!
```

Solutions: the Bohr atom bang-on.

the "quantum field"

"psi"...also called the "wavefunction"
the "state" of something.
The "Schroedinger Equation" predicts its behavior in space and time

what is the "state" of
 a system

a function:

you give me a time and a position in space

I'll give you the
"state" of the system

There can be classical states:

Let's call the "state" of the drumhead, S...which is a function of time and space.

The value of S is the height above the plane.
initial state at x_{0}, y_{0}, t_{0}
\& energy at any time, all over the surface

what is the

 "state" ofa system
but for quantum systems?

Schroedinger didn't know what it was
but he could solve the equation
\& energy
at any
time, all over the volume

