hi

Day 25, 05.12.2018

Quantum Mechanics 4

housekeeping

Gotta come to class
question about anything? I'll make a movie for you:
Quantum Mechanics:

Readings: Oerter, Cosmic Perspective, and Hobson
Hobson_QM1.pdf \& Hobson_QM2.pdf are chapters 12 \& 13 out of Hobson
Homework \#11 is all from MasteringPhysics - duesaturday rather than friday yeah. but I messed up and slipped visibility and due dates by a week... fixed last night, so due Monday, the 16th

honors project began

https://qstbb.pa.msu.edu/storage/Homework_Projects/honors_project_2018/
contains:
the first instructions: the plan \& tutorial
the second instructions - v2 uploaded, added a missing student
the data, assigned by name in the second instructions

dates:

complete first part, March 16
analyze data by April 24 and hand in complete writeup at the final exam

Here's

What You
Missed About e ectrons

slice through the wavefunctig1s of Hydrogen

Solve Schroedinger equation

and get wavefunctions:

Electron wave functions of atomic hydrogen $\mathrm{R}_{n \mathrm{f}}(\mathbf{r})$

${ }^{5} 15$

1 s

1s
then square them:

$\mathrm{n}=1$	$\mathrm{n}=2$	$\mathrm{n}=3$	$\mathrm{n}=4$	$\mathrm{n}=5$	$\mathrm{n}=6$	$\mathrm{n}=7$
$\begin{aligned} & l=0 \\ & m=0 \end{aligned}$					(O)	
$\begin{aligned} & l=1 \\ & m=0 \end{aligned}$						
$\begin{aligned} & l=1 \\ & m=1 \end{aligned}$						
$\begin{aligned} & l=2 \\ & m=0 \end{aligned}$						
$\begin{aligned} & l=2 \\ & m=1 \end{aligned}$						
$\begin{aligned} & l=2 \\ & m=2 \end{aligned}$						

Heisenberg Uncertainty Relation

 refers to: $\quad \Delta x \Delta p \geq h \quad \& \quad \Delta t \Delta E \geq h$ an inherent property of Nature example: lots of things!A measurement cannot be made of both precise position and precise momentum: Objects in Nalure dont possess those properties.

Of thinking and doing science
we lose another classical, unchallenged scenario

But, remember that what's real about the quantum fields is the square: $|\psi(x, t)|^{2}$

notice the peaking

called "wavepackets" all of the wave combinations means all of the momenta contribute: an spread in p.

the wavefunctions are everywhere

They're waves, after all.
the electron is there with probability $|\psi|^{2}$

Feynman's picture was one of particles: which take all possible paths

We can calculate the wavefunction at any point, very precisely...it's completely deterministic

so where is a quantum

before it's measured?

anywhere? everywhere?
yeah.
this is how we have to think about it:
before measurement: alive-dead state superposition state of both
after measurement: is either alive or dead

OBTW:

electrons

are little magnets

They behave in a magnetic field as if they are little spinning current spheres

The electron itself is like a spinning charge...

Electrons have an intrinsic angular momentum, "S": "spin"

$$
S_{z}=m_{s} \frac{h}{2 \pi}
$$

 and
"spin, minus $1 / 2$ " or "spin down"
refers to:
entomology:
example:
any particle with half-integer spin
from Fermi's theoretical work on the behavior of large numbers of Fermions
electron, proton, neutron
refers to:
entomology:
example:
any quantum object with integer spin from Satyendra Nath Bose, who worked on the effects of multiple boson aggregates
photon, pion, Higgs Boson
spin is a defining quality of

electron

symbol:
charge:
mass:
spin:
category:
$m_{e}=9.0 \times 10^{-31} \mathrm{~kg} \sim 0.0005 \mathrm{p}$

e

$-1 e$

1/2
fermion, lepton
particle: proton
symbol:
charge:
mass:
$m_{p}=1.6726 \times 10^{-27} \mathrm{~kg}=1 \mathrm{p}$
spin:
category: 1/2
fermion, hadron

photon

symbol:
charge:
mass:
spin:
category:
boson, aka Intermediate Vector Boson

I think I can safely say that nobody understands quantum mechanics.
 Richard Feynman

But we can calculate with Quantum Mechanics very, very well.

We're all highly skilled Quantum Mechanics

shifting gears antimatter

here's a number:

0

0

zero

the \# of successfully combined models of

Quantum Mechanics and Relativity

prior to 1928

remember the

relativistic energy
relationship
and compare it to the non-
relativistic one

Classical

$$
\begin{array}{rl}
E=\frac{1}{2} m v^{2} & p=m v \\
v & =\frac{p}{m}
\end{array}
$$

Relativistic

$$
E^{2}=\left(m_{0} c^{2}\right)^{2}+(p c)^{2}
$$

that square is problematic since it suggests:

$$
E= \pm \sqrt{\left(m_{0} c^{2}\right)^{2}+(p c)^{2}}
$$

translated to Schroedinger QM: negative energies for freely moving electrons

negative energies for unbound systems a disaster

negative energies for unbound systems a disaster

negative energies for unbound systems a disaster

worse!
Quantum Mechanics using Relativity:
required not only negative energies
negative probabilities!

1928

At the question period after a Dirac lecture at the University of Toronto, somebody in the audience remarked: "Professor Dirac, I do not understand how you derived the formula on the top left side of the blackboard.
"This is not a question," snapped Dirac, "it is a statement."
hilarious interview with the Wisconsin State Journal from 1929 on the blog.

Dirac's Mathematical Imagination

Dirac embraced the negative energy

Dirac set out to find an equation that would solve both problems

Dirac's imagination

Solved thee negative probability

The "Dirac Equation" is the correct equation for electrons: Probabilities turn out okay, but required interpretation of negative energies

Dirac's result

2 have positive energy, 2 have negative energy
$\left.\psi(q p(E) E) \psi(\gamma) T F_{v}\right) n(-E)$
each pair is related precisely to spin

Dirac showed that spin is a wholly relativistic effect ...it just popped out of his equation.

still

 negative energies?"solved" it with Pauli's Exclusion Principle

His vacuum is full of negative energy electrons

positive energy

negative energy

start

with
 nothing

NOTHING

+ Energy

$$
E_{\gamma}>2 m_{e} c^{2}
$$

Let's talk about Nothing.

Dirac began this discussion
which continues today
in particle physics
and in cosmology

what is this?

$$
\psi(-\mathrm{E}) \text { a positively charged object with negative energy? }
$$

At first, he thought: "proton"
nah. A bolder idea: an anti-electron. The Positron.

modern

 intepretata photon poof-disappears

The antimatter story has a

 happy ending:1932

Cosmic Rays very high energy protons from space

~2 per minute per fingernail

Carl
 Anderson

sharper curvature at top
look at this track...
clever...put in a lead plate to cause particles to lose energy

DOWN and negative? UP and positive?

- B field in

B field in

anti-electron, aka "positron"

symbol:
charge:
mass:
spin:
category:
\bar{e} or e^{+}
+1e

$$
m_{e}=9.0 \times 10^{-31} \mathrm{~kg} \sim 0.0005 \mathrm{p}
$$

$$
1 / 2
$$

anti-fermion, anti-lepton

antimatter

is a fact of life

every particle has it's anti-particle partner

same mass, different electrical charge

Dirac

Nobel

at the age of 31

Nobelprize.org
The Official Web Site of the Nobel Prize

Home / Nobel Prizes / Nobel Prize in Physics / The Nobel Prize in Physics 1933

About the Nobel Prizes	的Printer Friendly	(Share	\square Tell a Friend	Q Comments	
Facts and Lists	1901		2012		
			Prize category: Physics it		
All Nobel Prizes in Physics	Sort and list Nobel Prizes and Nobel Laur $\hat{\text { 人 }}$				

The Nobel Prize in Physics 1933 Erwin Schrödinger, Paul A.M. Dirac
Prize Awarder for the Nobel Prize in Physics
Nomination and Selection of Physics Laureates Nobel Medal for Physic Articles in Physics Video Interviews Video Nobel Lectures Nobel Prize in Chemistry Nobel Prize in Physiology or Medicine
Nobel Prize in Literature
Nobel Peace Prize Prize in Economic Sciences Nobel Laureates Have Their Say Nobel Prize Award Ceremonies Nomination and Selection of Nobel Laureates

The Nobel Prize in Physics 1933

Emwin Schrödinger

Paul A.M. Dirac

The Nobel Prize in Physics 1933 was awarded jointly to Erwin Schrödinger and Paul Adrien Maurice Dirac "for the discovery of new productive forms of atomic theory"

Photos: Copyright © The Nobel Foundation

TO CITE THIS PAGE:
MLA style: "The Nobel Prize in Physics 1933". Nobelorize.org. 14 Mar 2013
http://www.nobelprize.org/nobel_prizes/physics/laureates/1933/

Carl

Anderson

and Victor

Hess

Anderson was 31

2 Nobelprize.org
The Official Web Site of the Nobel Prize

Nobel Prizes	Alfred Nobel	Educational	Video Player	Nobel Organizations	\square

Home / Nobel Prizes / Nobel Prize in Physics / The Nobel Prize in Physics 1936
About the Nobel Prizes

Facts and Lists

D Nobel Prize in Physics

All Nobel Prizes in Physics

Facts on the Nobel Prize in Physics

Prize Awarder for the Nobel Prize in Physics
Nomination and Selection of Physics Laureates Nobel Medal for Physics Articles in Physics Video Interviews

Video Nobel Lectures
Nobel Prize in Chemistry Nobel Prize in Physiology or Medicine

Nobel Prize in Literature
Nobel Peace Prize
Prize in Economic Sciences
Nobel Laureates Have Their Say
Nobel Prize Award Ceremonies
Nomination and Selection of Nomination and

B Printer Friendly	(Share	\triangle Tell a Friend	Q Comments		
1901		2012	1		
				1936	-
Sort and list Nobel Prizes and Nobel Laur	\dagger	Prize catego	Ph	sics	-

The Nobel Prize in Physics 1936
Victor F. Hess, Carl D. Anderson
The Nobel Prize in Physics 1936
Victor F. Hess
Carl D. Anderson

Victor Franz Hess
The Nobel Prize in Physics 1936 was divided equally between Victor Franz Hess "for his discongnof cosmic radiation" and Carl David Anderson "for his discovery of this discover fof cosm
this is where it gets interesting we need to establish a language for Dirac-like reactions
"Relativistic Quantum Field Theory" essentially invented by Paul Dirac
notice a couple of things about what appears in Dirac's equation

1. it's about more than one thing: two electrons and a photon
"regular" Quantum Mechanics is about single objects only
2. stuff appears and stuff disappears

what's

nothing.

what's nothing

you'd maybe say:

no objects (particles...quanta)
zero energy

the Heisenberg Uncertainty Principle:

there's no state of Nature that can possess any precise value of, say, energy
and that includes Zero.

the Heisenberg Uncertainty Principle

will not allow a void.
but we still have a notion of the vacuum
it's the lowest energy state in Nature
where there are no real particles

understanding whatsgoingonhere

requires some mental fortitude

remember

trying to trap an electron?

let's make it all about nothing.

an electron...somewhere here:

make the trap smaller

remember

trying to trap an electron?

do nothing tighter

or an electron, somewhere here:

make the trap smaller to this value:

$$
\begin{aligned}
\Delta x & \sim \frac{h}{m_{e} c} \\
& \sim 2.2 \times 10^{-12} \mathrm{~m}
\end{aligned}
$$

The size of a Hydrogen atom... $5 \times 10^{-11} \mathrm{~m}$
The size of a proton... $\sim 10^{-15} \mathrm{~m}$
an important
but simple calculation about nothing

a very

important "length"

$$
\Delta x \Delta p \quad \sim \quad h
$$

$$
\frac{h}{m_{e} c} \Delta p \sim h
$$

Compton
 Wavelength

we consider this to be

$$
\frac{1}{m_{e} c^{2}} \Delta p c \sim 1
$$ "the size of a particle"

$$
\Delta x \sim \frac{h}{m_{e} c}=\lambda_{\text {Compton }}=\lambda_{C}
$$

$$
\Delta p c \sim m_{e} c^{2}
$$

Remember: $\quad E_{T}^{2}=\left(m c^{2}\right)^{2}+(p c)^{2}$

An energy equivalent to the mass energy...all by looking closely at nothing.

remember

What's in Nothing with an electron?

trying to trap an electron?

do nothing tighter

make the trap smaller to this value:

$$
\sim 2.2 \times 10^{-12} \mathrm{~m}
$$

but wait.

let's just do this in space...shrink to this critical size

the same thing happens

remember

What's in Nothing?

为

or NOTHING, somewhere here:

trying to trap an electron?

do nothing tighter

make the trap smaller to this value:

$$
\begin{aligned}
\Delta x & \sim \frac{h}{m_{e} c}=\lambda C \\
& \sim 2.2 \times 10^{-12} \mathrm{~m}
\end{aligned}
$$

pop

the Uncertainty Principle requires

that particle-antiparticle pairs pop into and out of existence all the time

uncertainty principle

+ the particular length of:

$$
\lambda_{C}=\frac{h}{m c}
$$

makes the vacuum very active.
they are all popped out of the same stuff the vacuum Field of the electron
electrons appear because they're coerced out of the vacuum
like by a photon
the quantum vacuum

a word about theories

let's play chess...

my model of chess watch tons of matches

my model requires

the existence of a new entity

my model of chess

 only with the board do the rules make sense| | 白晋 | | | |
| :---: | :---: | :---: | :---: | :---: |
| \％ 1 | \％${ }^{\text {¢ }}$ | 1 | | d |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| 8 | $8) 8$ | | | |
| 宜曾 | 畐 | | | |

remember

 what I see are the pieces

remember

 what I need to be the case...is the board| | 䙻 | 발응 | 栜 |
| :---: | :---: | :---: | :---: |
| 181 | 1 ${ }_{1}$ | | |
| | | | |
| | | | |
| | | | |
| | | | |
| 83 | 83 | 83 | 38 |
| | 일 W | | Q |

The technical description:

"if it walks like a \mathcal{X} and it quacks like a \mathcal{X}, then it must be a
 I)

11

I)
a successful physics model that requires an additional
commitment!

what about

 fields?
fields

a number in space

you know one

everywhere...a number

you know one

everywhere...a number

what's a particle?

it's localized wave in a field

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PHOTON FIELD ${ }^{\circ}$

$0 \quad 0 \quad 0$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$0 \quad 0 \quad 0 \quad 0 \quad 0$
$0 \begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$

$\begin{array}{lllllllllllllllllllllll}0 & 0\end{array}$
$\begin{array}{lllllllllllllllllllllllll}0 & 0\end{array}$
000
$\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$0 \quad 0 \quad 0$
$\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$0 \quad 0 \quad 0$
$0 \quad 0 \quad 0$
$0 \quad 0 \quad 0$
$0 \quad 0$

$$
\begin{array}{llllllllllllllllllllllllllll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}
$$

-2	0	0	- 9	-2	- 9	-2	2	9	- $¢$	-2	Q	2	0	-9	9	9	9	0	-9	-2	-2	-2	Q	9	2	- 9
0	-2	2	0	(1)	- 9	-9	0	-2	9	2	2	-2	©	9	©	-2	- \uparrow	0	0	- 9	-2	- 9	0	-2	9	0
(1)	0	-2	-9	0	-2	-9	(1)	2	-2	2	Q	0	2	Q	2	2	Q	-2	2	2	-2	0	2	2	¢	2
Q	0	0	- -	0	2	2	- 9	-2	0	-2	2	Q	2	$-\Phi$	- \uparrow	- \uparrow	- \uparrow	-2	0	-2	- 9	2	©	- 9	- 9	©
-¢	-9	(1)	2	-2	- 9	-4	-2	2	(1)	(1)	2	0	-2	-2	©	2	- -1	2	- -1	0	©	0	-2	0	©	2
2	0	2	(1)	-2	©	2	Q	-2	2	0	©	0	-2	0	-2	-2	0	- ${ }^{\text {- }}$	2	-2	2	0	(1)	2	(1)	0
©	-2	-2	2	0	-4	-4	0	-9	-2	-9	2	0	-2	-2	2	©	©	2	0	2	-2	0	9	2	-2	-4
2	- 9	(1)	(1)	0	-1	-2	©	0	2	-9	2	-2	0	- 4	2	©	1	0	- ${ }^{\text {P }}$	(1)	2	- 9	- ${ }^{\text {P }}$	2	-1	-2
-2	0	0	0	-2	(1)	2	2	-2	-9	2	©	2	- 9	- -1	- 9	0	2	- 9	0	2	2	©	2	2	-2	0
2	(1)	(1)	0	(1)	-4	-9	0	(1)	(1)	(1)	-2	-2	-2	0	- ${ }^{\text {d }}$	(1)	0	0	- ${ }^{(1)}$	- 9	- 9	(1)	2	-2	(1)	2
-2	2	(1)	-9	0	(1)	0	0	2	0	-2	©	(1)	2	(1)	0	- ${ }^{\text {d }}$	- ${ }^{\text {P }}$	2	(1)	0	-2	(1)	(1)	0	-2	0
0	-2	2	0	2	0	2	©	(1)	2	-9	- 1	-9	-2	2	-2	-2	0	- 9	(1)	2	-2	- 9	2	2	-1	2
2	2	(1)	(1)	-2	-2	-2	2	-2	-2	2	0	-(1)	-2	-2	2	(1)	(1)	2	(1)	2	0	- 1	(1)	2	2	(1)
-2	-1	2	0	-(1)	(1)	-2	2	2	(1)	-(1)	0	0	©	2	2	2	-2	(1)	(1)	0	2	0	(1)	(1)	- 1	(1)
(1)	2	-1	-2	(1)	0	0	2	-4	2	-9	2	-(1)	©	-2	2	0	0	©	©	0	(1)	-2	(1)	(1)	-2	2
-2	0	2	-2	0	(1)	-(1)	-2	2	-2	-(1)	-1	-(1)	-2	2	(1)	(1)	-2	0	(1)	-2	-8	0	0	-(1)	2	-8
2	(1)	2	(1)	(1)	0	-2	-(1)	-2	(1)	0	(1)	(1)	0	(1)	(1)	2	0	2	2	(1)	(1)	- ${ }^{1}$	8	8	0	(1)
0	-(1)	(1)	-2	(1)	2	0	-(1)	-(1)	8	-2	-1)	2	2	(1)	2	2	(1)	(1)	0	0	-2	(1)	-(1)	-(1)	-2	-(1)
0	-2	-1	-(1)	(1)	(1)	0	0	0	0	\square	(1)	-2	0	-1)	-1	-(1)	0	0	-2	0	(1)	0	0	0	2	-1
-(1)	2	0	(1)	-8	-1)	-8	-8	-(1)	-(1)	(1)	2	2	-2	0	0	-(1)	-(1)	(1)	-2	-1	-2	(1)	2	-1	2	(1)
-Q	-8	(1)	(1)	-8	0	-(1)	0	-Q	-(1)	-8	-(1)	0	-2	-8	-(1)	-2	-8	(1)	0	-1	0	-(1)	(1)	-8	0	0
0	0	0	8	-(1)	0	0	0	-(1)	-(1)	0	0	(1)	-2	(1)	-2	8	-(1)	-8	0	0	-8	-8	8	0	0	(1)
0	0	0	-8	-8	(1)	-(1)	-8	-(1)	0	(1)	(1)	0	-2	(1)	-(1)	-(1)	-2	0	(1)	0	0	0	-2	0	(1)	(1)

here's how

stuff happens

in this particle field theory model

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

$\begin{array}{lllllllllllllllllllllllll}0 & 0\end{array} 0$ $\begin{array}{llllllllllllllllllllllllll}0 & 0\end{array}$

 $\begin{array}{lllllllllllllllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - & 6 & 7 & 8 & 0 & 8 & 7 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 6 & 7 & 9 & 10 & 9 & 7 & 6\end{array}$

 $\begin{array}{lllllllllllllllllllllllllll}0 & 0\end{array}$
 $\begin{array}{llllllllllllllllllllllllll}0 & 0\end{array}$

 $\begin{array}{llllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ 00
electron
photon field "disturbance"

our atom

2nd way

forces?
fromparticles (1st way

particle field theory* the best theory in history

never an
incorrect prediction

outrageously precise agreement, prediction and measurement
*Quantum Electrodynamics

what's more fundamental?

a winner
fields

the particle vacuum full of fields:

the particle vacuum full of fields for every "particles"

two predictions for "space"

energy in the particle vacuum is

$30,000,0$ $00,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000$
times the energy in the dark energy vacuum

this has a name

"the worst prediction in the history of physics"

a little more
 specific

$$
\left.a^{\dagger}(k)|0>=| e\right\rangle
$$

what the

 mathematics tells US

$$
a(p)|\gamma>=| 0>
$$

$$
a(p)\left|\gamma>=\left|0>\quad a^{\dagger}\left(k^{\prime}\right)\right| 0>=\right| e>
$$

it's not like the photon is now "in" the electron
the photon pops the electron- positron pair out of the Ur electron field and itself disappears back into the Ur photon field.
but what
we have to subtract the energy of the vacuum
does taway..because it's infinite and all we care about is the states we build above the vacuum energy

mean?

Okay. So we don't like infinity we subtract it away and worry about the difference between
infinity and finite energies of real particles

Seriously?
That seems to be the case.
This picture works with exquisite precision and accuracy.

but the

vacuum

is roiling with

 particleantiparticle "virtual pairs" popping into and out of existencemultiple ways we know this.

A "regular" model of the hydrogen atom...needs modification to take into account the effects of the vacuum

The electron cloud is spread out by the virtual photon and the positron's effects...and that changes the emission spectrum of hydrogen: The "Lamb Shift"...measured after WWII with microwave technologies

1955

Nobel

Prize

Willis E. Lamb

died just a few years ago at the University of Arizona

Nobelprize.org
The Official Web Site of the Nobel Prize

the

"Casimir

Effect"

two highly polished mirrors isolated from all external effects

The vacuum has all wavelengths of virtual waves from particles and fields...but fewer can fit between the walls
...and the pressure from the outside, moves them closer together

M/MWn

The amount is precisely predicted...and a few years ago the experiments confirmed it convincingly in 2001
the vacuum
is a very complicated thing
as we'll see when we get back to cosmology

Feynman Diagrams

now for real.

creation and annihilation of can be embodied in Feynman Diagrams

hero

worship

about as close as
we come

Richard

Feynman, Sin-Itiro Tomonaga,

Julian

Schwinger

1965 Nobel
 Nobel Laureates

Nobelprize.org
 ,

Home

Home / Nobel Prizes / Nobel Prize in Physics / The Nobel Prize in Physics 1965

About the Nobel Prizes	B Printer Friendly	(Share	\square Tell a Friend	Q Comments	
Facts and Lists	1901		2012		
D Nobel Prize in Physics	Sort and list Nobel Prizes and Nobel Laur *)		Prize category: Physics		-
All Nobel Prizes in Physics			\uparrow		

rizes in Physics
Facts on the Nobel Prize in Physics
Prize Awarder for the Nobel
Prize in Physics
Nomination and Selection of Physics Laureates
Nobel Medal for Physics
Articles in Physics
Video Interviews
Video Nobel Lectures
Nobel Prize in Chemistry
Nobel Prize in Physiology or
Medicine
Nobel Prize in Literature
Nobel Peace Prize
Prize in Economic Sciences
Nobel Laureates Have Their Say
Nobel Prize Award Ceremonies Nomination and Selection of

Sin-Itiro Tomonaga

Julian Schwinger

Richard P. Feynman

The Nobel Prize in Physics 1965 was awarded jointly to Sin-Itiro Tomonaga Julian Schwinger and Richard P. Feynman "for their fundamental work in quantum electrodynamics, with deep-ploughing consequences for the physics of elementary particles".

Photos: Copyright © The Nobel Foundation

TO CITE THIS PAGE:

MLA style: "The Nobel Prize in Physics 1965° ". Nobelprize.org. 23 Mar 2013
hittp://www.nobelprize.org/nobel_prizes/physics/laureates/1965/

the

symbols

of
Feynman
Diagrams

each line represents an entire "history" of trajectories

to go from A to B, represent all histories with a single line.

Feynman's lines include rules on how to calculate the possibilities in a relativistically consistent way.

very

efficient

avoids lots of technicalities.

When I teach these techniques to second year graduate students, I first do the calculation of Compton Scattering and do it without Feynman's tools.

his rules

eliminate

all of that

and I can just write down the "answer"

appropriately labeled, each line tells us what to put into a long equation for further solving

but the pictures themselves are visually...informative
and I'm going to try to tell you how to do this
without the geeky mathematics

theoretical papers each diagram is a complicated calculation

CHIN. PHYS. LETT. Vol. 27 , No. $8(2010)$ os1201
2.1.1 Lepton and heavy quark pair decays of the SM Higgs particle In lowest order the leptonic decay width of the SM Higgs boson is given by [10, 37]

$$
\begin{equation*}
\Gamma\left[H \rightarrow l^{+} l^{-}\right]=\frac{G_{F} M_{H}}{4 \sqrt{2} \pi} m_{l}^{2} \beta^{3} \tag{6}
\end{equation*}
$$

with $\beta=\left(1-4 m_{l}^{2} / M_{H}^{2}\right)^{1 / 2}$ being the velocity of the leptons. The branching ratio of decays into τ leptons amounts to about 10% in the intermediate mass range. Muonic decays can reach a level of a few 10^{-4}, and all other leptonic decay modes are phenomenologically unimportant.

Figure 3: Typical diagrams contributing to $H \rightarrow Q \bar{Q}$ at lowest order and one-, two- and three-loop $Q C D$.

For large Higgs masses the particle width for decays to b, c quarks [directly coupling to the SM Higgs particle] is given up to three-loop QCD corrections [typical diagrams are depicted in Fig. 3] by the well-known expression [38-40]

$$
\begin{equation*}
\Gamma[H \rightarrow Q \bar{Q}]=\frac{3 G_{F} M_{H}}{4 \sqrt{2} \pi} \bar{m}_{Q}^{2}\left(M_{H}\right)\left[\Delta_{\mathrm{QCD}}+\Delta_{t}\right] \tag{7}
\end{equation*}
$$

we really do use Feynman Diagrams

Feynman's approach is really sneaky and really cute
energy and time appear together in the equations:

In essence, this:

$$
\begin{array}{ll}
\text { either energy solution: } & (\pm E)(t) \\
\text { just the -E solution: } & (-E)(t) \\
\text { move the - sign: } & (E)(-t)
\end{array}
$$

Get a whole new interpretation of antimatter

