# Relativity 4 ## Example 2: The Total Energy Relation **The Question:** The relation of the total energy to momentum is not an obvious extrapolation from our original total energy relation. So let's work through this: How do we go from $$ E_T=m\gamma c^2 $$ to $$ E_T^2 = m^2c^4 + p^2c^2 \text{ ?} $$ ------ **The Answer:** Here's what we know: $$ \begin{align} \text{energy: }E_T &= m\gamma c^2 \nonumber \\ \text{momentum: } p &= m\gamma v \end{align} $$ Let's square Equation 1: $$ E_T^2 = m^2\gamma^2c^4 $$ and look at the square of the gamma function...a kind of insider-trick among relativistic aficionados. $$ \begin{align} \gamma &= \frac{1}{\sqrt{1-\beta^2}} \nonumber \\ \gamma ^2 &= \frac{1}{1-\beta^2} \nonumber \\ \end{align} $$ and use that in Equation 4: $$ \begin{align} E_T^2 &= m^2\gamma^2c^4 \\ E_T^2 &= m^2c^4 \frac{1}{1-\beta^2} \\ & \text{multiply through the big fraction: } \nonumber \\ E_T^2 \left( 1-\beta^2 \right) &= m^2c^4 \text{ almost there} \\ E_T^2 - E_T^2\beta^2 &= m^2c^4 \\ E_T^2 &= m^2c^4 + E_T^2\beta^2 \end{align} $$ Now look at the last term in Equation 9 and do some manipulation remembering the momentum equation and that $\beta = v/c$. $$ \begin{align} E_T^2\beta^2 &= m^2 \gamma^2 c^4 \beta^2 \nonumber \\ E_T^2\beta^2 &=(m\gamma c)^2 \left( c^2 \beta^2 \right)\\ E_T^2\beta^2 &=(m\gamma c)^2 v^2 \\ E_T^2\beta^2 &=(m\gamma v)^2 c^2 \\ E_T^2\beta^2 &=p^2c^2 \end{align} $$ so now we have it by substituting Equation 12 into Equation 9: $$ \begin{align} E_T^2 &= m^2c^4 + E_T^2\beta^2 \\ E_T^2 &= m^2c^4 + p^2c^2 \end{align} $$