Contents
- There are no scientific Laws.
- Facts change and there is no scientific Truth.
- It is not possible to prove a theory.
- It is not possible to test a theory. We test models.
- There is a reality “out there” and our understanding of it continuously improves.
- Science is what scientists do.
- Scientific knowledge is a unique kind of knowledge.
I’ve been a scientist for more than four decades and so if asked, you would think that sure, I can tell you what “science” is, right? Well, it’s…subtle. There are all of these concepts that sound scientific and often use everyday words that muddy the waters, so to speak. In this section, I’ll attack this “what is science” question by picking on some of the more complicated ideas. Let me start with some bumper-sticker statements that I believe all of my colleagues would agree to. Or not. We argue a lot.
- There are no Scientific Laws.
- Facts change and there is no scientific Truth.
- It is not possible to test a theory. We test models.
- There is a reality “out there” and our understanding of it continuously improves.
- Science is what scientists do.
- Scientific knowledge is a unique kind of knowledge.
Squirming yet?
There are no scientific Laws.
Let’s start with the 800 pound turtle in the room: Laws.
Turtles and Gasoline: Theory and Law
In 2008, the Board of Education in the state of Florida1 struck a compromise between factions which wanted to include creationism in Florida’s high school science curriculum and those who did not. The fuss was resolved by mandating that whenever evolution was mentioned, it was to be referred to as the Theory of Evolution. By contrast, whenever Newton’s rule regarding gravity was used, it was to be called Newton’s Law of Gravitation. Law, good. Theory? Notsomuch. Remembering this story is why I have on my unhappy face right now.
The obvious implication is that somehow a theory is less than a law, less believable, less trustworthy, less true, less factually correct. This is demoralizing for us physicists since it lays bare a serious misunderstanding about what science can and cannot do.
Here’s an oft-told story about turtles as the bedrock on which the universe is built. In arguing his plurality opinion in Rapanos v. United States, Justice Antony Scalia criticized Justice Kennedy’s argument in a footnote:
Turtles
“In our favored version, an Eastern guru affirms that the earth is supported on the back of a tiger. When asked what supports the tiger, he says it stands upon an elephant; and when asked what supports the elephant he says it is a giant turtle. When asked, finally, what supports the giant turtle, he is briefly taken aback, but quickly replies “Ah, after that it is turtles all the way down.”2
When it comes to assertions about the universe by scientists, it’s theories, all the way down.
The word “law” has multiple meanings. In the 1970s there was an unpopular national speed limit of 55 mph and the catch-phrase used to encourage compliance was: “It’s not just a good idea, it’s the law.” That’s one interpretation of a law—an instruction which you should obey but can choose to violate albeit with possible consequences. But you can violate that highway law without altering the universe.
Then there’s a popular notion of a Scientific Law. This kind of Law is impossible to violate: once it’s discovered, it’s almost biblical in its permanence and trustworthiness. Once you’ve found a Law, man, you’re done. That’s it. It’s way better than a theory. Go do something else.
This idea of a Law was incorporated into the description of physics following Isaac Newton’s almost super-human successes. Surely, he’d uncovered the Laws of Nature and surely uncovering the Laws of Nature is the goal of science! You’ll see all manner of “Laws” that follow Newton’s three Laws of Motion and Newtons Gravitational Law: Snell’s Law, The First and Second Laws of Thermodynamics, the Law of Reflection, Faraday’s Law, Ampere’s Law…and so on, up to the 20th century when we got serious. From that point, it’s Einstein’s Special Theory of Relativity, Einstein’s General Theory of Relativity, Quantum Theory, Relativistic Quantum Field Theory, the Big Bang Theory, and so on. Are we just dumber than when all of science was uncovering Laws? No, of course not. Rather, around the turn of the 20th century the subtlety of just what science is and does was sinking in. But apparently not in Florida.
Let me tell you a story.
The speed of light
We will spend a lot of effort in becoming comfortable with Einstein’s Theory of Relativity. One of its famous, bedrock rules is that the speed of light is the fastest that anything can travel. Relativity has been confirmed so many that we use it as a tool and not a theory to be tested…Florida should call it the Law of Relativity. But we don’t. It’s the Theory of Relativity.
There is an elementary particle called the neutrino that is so light that it travels at almost the speed of light. In 2011 an experiment called Opera in a mountain in northern Italy was under way to measure properties of neutrinos coming from the particle accelerator in Geneva, Switzerland, almost 1000 km away.
In order to be sure of the source of interactions, Opera had a sophisticated GPS system that measured times in Geneva and times in the mountain at a precision better than ±0.000000010 seconds (±10 nanoseconds). What they found was that the neutrinos appeared to arrive faster than the speed of light would allow, apparently violating the Theory of Relativity!
If Relativity were a Law of Nature in the Florida-way, say the “Law of Relativity”—then the surprising Opera measurement would have confronted the authority of the Law of Relativity and the scientists would back down. Can’t cross that threshold of Law. But scientists couldn’t do that. The experimenters worked very hard to redo their analyses and scoured their experimental apparatus for any place that the few nanoseconds might have been missing.
I was a member of the Physics Advisory Committee at the Fermi National Laboratory in Batavia, Illinois which was running a similar experiment, shooting neutrinos from Illinois to a mine in northern Minnesota. We asked them and learned that they too saw an effect, but they used a conventional GPS and they couldn’t measure times precisely enough to test Relativity… so we bought them a fancy GPS system so they could check! Meanwhile many alternative explanations around Relativity were proposed to account for the measurement.
After a year or so, Opera discovered a subtle electronics malfunction that accounted for the missing few nanoseconds and then were able to conclude that Einstein could rest easy.
The important part of this story you surely have understood by now. Relativity is among the most trusted theories in all of science—if anything is “true” then this is it! And yet, we went back to testing Relativity and alternative theories were put forward. The authority of Relativity is not absolute, it’s not Law-like.
I was proud of my community during that episode. That’s how it’s supposed to work. There are no Laws of the capital L kind and this leads to an important way to distinguish scientific knowledge from un-scientific knowledge: any proponent of a scientific statement must be able to state the circumstances that would require its refutation. Opera—and all of us—could conceive of Relativity being compromised and resources and people were used to re-check Relativity. Nobody said, “Let’s ignore this evidence because Relativity must be true.” We all said, “Wow. This is probably a mistake but we’d better spend a year around the world checking it.” Because, nothing’s sacred in science.
Philosophers have proposed many tests to distinguish “science” from “pseudo-science” and here’s one of my favorites…it’s a test you can apply to anyone who says that something is true. Ask what it would take for someone to change their mind. In science, it consists of asking, “How could your theory be shown to be wrong?” “Is there any part of your knowledge system that is beyond questioning?” Proponents of scientific statements can always tell you what evidence would force them to abandon one of their favorite theories. The Opera result is one of those pieces of evidence that could in-principle have overthrown Relativity.
Proponents of unscientific statements cannot—or will not—do that. The most obvious contemporary example of an unscientific assertion are those that come from creationism or “intelligent design” as explanations for any aspect of the universe. Unlike Opera, proponents of these systems of belief hold that some parts of their knowledge are off-limits for questioning.
When some part of a theory cannot, in principle, be doubted, this disqualifies that theory as scientific. It’s something else.
Wait. Why shouldn’t students be taught both sides of such a disagreement about our origins?
Glad you asked. That’s now called “teach the controversy“ and it’s not appropriate for two reasons. First, to put creationism in a science class goes against that crucial falsifiability requirement. So it’s not science. Second, science is not a democracy. There’s no requirement in how the universe works that it make people happy. It is what it is.
So how to speak about theories and laws since we have historical names like “Newton’s Laws” and “Einstein’s Theory of Relativity”? Sorry, Florida, here’s an irony. One of the consequences of Einstein’s Theory of Relativity actually shows that Newton’s Laws of motion were wrong! Given my particular prejudice and my desire to have this sink-in to non-science students studying science:
In QS&BB I’ll never refer to a scientific Law, and only when I have to when referring to an historical subject I’ll grudgingly speak of a scientific law: Big L? Nope. Small l?
In QS&BB we’ll work with the nuts and bolts of science: theories and models and this book will consist of the stories of how theories came to be, how they were modified, how they disappeared, and how we know so much more about the universe as a result.
Wait. So if the rules of the science-game prohibit absolute Scientific Laws, what is scientific truth?
Glad you asked. Let’s talk about facts and truth.
Facts change and there is no scientific Truth.
“Just the facts, Ma’am.” An iconic catch-phrase uttered by Detective Joe Friday on the 50’s crime show, Dragnet. Everyone knows what a fact is, right? Well it’s not a fact that Joe Friday ever said that line in the TV program, but ask anyone over the age of 50 and chances are that they will agree that it’s a fact that Detective Friday uttered that line every episode. But he didn’t. That’s an urban myth born of a popular 1953 spoof of the program, Little Blue Riding Hood. Google it and listen (it’s only 3 minutes).
Here’s another one of those words: fact. You might want to say that science consists of facts arranged in order to support or define theories. There’s an assumption built into that sentiment: on the one hand there are facts about the world and on the other hand, there are opinions about the world and science works hard to separate the two…and reserve “facts” as the fuel for theories and guard against opinion from influencing that process. That’s the case. But like Law, this burden given to “fact” sometimes assigns to it the responsibility of being a “true thing.” But even in everyday life, let alone in nearly every crime novel ever written, facts depend on evidence and evidence is a set of informed observations. And observations change, they evolve, or they can be mistaken.
A plausible-sounding, if simplified cartoon of the scientific method might be: evidence $\to$ facts $\to$ Laws. But if Laws are not forever, where in this chain does uncertainty sneak in? Obviously, it’s that evidence and facts are not permanent. It was a fact that the evidence pointed to the fact that all objects move slower than the speed of light, but when the evidence appeared to change we were prepared to dispute the theory and so Relativity as a Law in the Florida-sense didn’t fit.
More appropriate is a chain that goes like: evidence $\to$ facts $\to$ theories. And then depending on the accumulation of the evidence that justify the facts, we have theories we trust a lot and theories we’re just beginning to get to know. But since evidence is contingent, facts are contingent, and so theories are contingent. Any or all can change and it takes a professional scientist to know when to pull the plug on any one of them.
It is not possible to prove a theory.
Okay, if you’re with me this far, you’re tentatively prepared to go along with the idea that indeed, it’s theories all the way down. Our theories are supported by facts which in turn are justified by evidence. But if the established facts support the theory, doesn’t that “prove” it?
Wait. Doesn’t that just take us back to Laws as “proven theories”?
Glad you asked. That sounds like a word-game, but it’s more. Can there every be enough evidence?
Frogs and Squirrels: Proof
My impression of the normal use of “prove” — and yours, I’ll bet—implies something that’s final and beyond question. Its everyday usage probably comes from memories of mathematical proofs, which are iron-clad processes of reaching a conclusion through a series of deductions from a set of premises. Look at this figure:
If the words were not enough, a Venn diagram should make it unavoidably clear: C is all within A, so Socrates is mortal. Can’t get any more confident of the conclusion than this!
The blue figure represents all men who are Socrates, the green circle represents all people who are men, and the red circle represents all mortals who are men. It’s logically impossible to claim that this diagram would allow any Socrates to not also be mortal.
This is the essence of one of the simplest forms of deductive reasoning called the syllogism. It was Aristotle’s invention and his favorite and this is his example which is as obvious today as it was for Aristotle’s students and friends. Even if it’s not written in ancient Greek! Here it is in its formal layout:
- All men are mortal.
- Socrates is a man.
- Therefore, Socrates is mortal.
The power of this is not about Socrates, but the general nature of the form of the argument. It’s mathematical in nature. Do you remember the “transitive property” of arithmetic? If $A = B$ and $B=C$ then $A=C$? This is precisely the same story about Socrates but dressed up to look like middle school math without any reference to a gadfly philosopher or the species of men. Within the tight little universe of the assertions and the conclusion, there is no room for dispute in a deductive argument: Socrates can be nothing but mortal, $A$ cannot be anything but $C$.
Since deduction is how you go from one point to the next in a proof, it’s easy to see why “proof” carries a heavy responsibility and that’s the problem with using the word “proof” in a scientific context.
Rene Descartes in the 17th century was the paradigm deduction champion at the beginning of modern western philosophy and tried to take that method into physics (which was called natural philosophy). Newton was at first a fan, but then changed his tune.
Do you learn anything new from a deductive proof? In going from premises to conclusion nothing entered the process that wasn’t already there to begin with, so the conclusion seems to be “inside” of the premises all along! This was so important to Plato, that he decided that one already knows mathematics and that you are actually remembering things in a deductive proof that you already knew. You’d just forgotten.
Just to be perverse, here’s another syllogism of exactly the same form as the previous one:
- All frogs are coffee pots.
- This animal is a frog.
- Therefore, this animal is a coffee pot.
This has exactly the same validity as the Socrates example—it fits the Venn diagram. But nobody would accuse a frog of being a kitchen appliance. Obviously, the viability of the premises in a deductive argument makes the whole thing sensible…or nonsense. Dare I ask, is it a fact that frogs are coffee pots? If it were so, then the syllogism is not only formally correct, but also leads to a reasonable conclusion about green amphibians.
Does science work this way? There was a time in the 17th and 18th century—the “Scientific Revolution” time—when marvels were being unearthed and thousands of years-old puzzles were being explained. The successes were so impressive that it came to be appreciated that maybe this new invention of science must be taking us directly to nature’s truths. We now know that science is not that clean.
Before I moved to East Lansing I’d seen lots of squirrels in my life. They were all brown and I had created a Theory of Squirrels in my brain that said, “All squirrels are brown.” Indeed, I would have said that it was a fact that squirrels are brown and that fact was justified by my many observations of squirrels, all of which were brown. That’s lots of squirrels.
Imagine my surprise in 1980 when I saw hundreds of black squirrels in my new Michigan town. My justification took a turn for the worse. My theory of squirrels was defeated. (Luckily I’d not announced a Law of Squirrels!) I later learned that the black squirrel had been intentionally brought to the Michigan State campus in the 1950s and obviously spread to town. So if I’d moved to Michigan in the 1940’s my theory of squirrels would have received continued justification.
I was reminded that reasoning by induction is risky and that facts can change.
Remember induction? It’s “the other” form of reasoning where you observe a pattern or some process over and over—maybe under controlled (scientific?) conditions—and then abstract from those observations to a general statement of fact. The facts are a statement of what I know up until now, but my theory is a framework that permits me to predict the future. You can imagine that for the first 30 years of my life I was constantly uttering:
“There’s a brown squirrel.
There’s another brown squirrel.
There’s another brown squirrel.
There’s another brown squirrel.
There’s another brown squirrel.”
In my 20’s maybe: “It is a fact that my observed squirrels are all brown.”
Then, triumphantly, “My theory of squirrels is that all squirrels are brown.”
That’s induction. But a theory that comes from induction is subject to modification or even rejection since only a single instance can disappoint. (By the way, I’d insist that every observation of a brown squirrel was factual! I was justified in every observation that brownness was what that squirrel presented to me.
Certainly there’s a lot of induction in science. In fact Galileo’s contemporary and correspondent Francis Bacon enthusiastically built a case for science based on induction—at about the same time that Descartes did the same thing for deduction. Both have their uses today. A mathematical physicist is likely to be deducing consequences of theories and models, an experimental physicist is likely to be inductively drawing conclusions from patterns in data, while that same experimental physicist is likely to be using deduction in the process of debugging malfunctioning equipment, and an electrical engineer or scientist designing digital electronic circuits will be deeply immersed in the individual components in a circuit that explicitly uses deductive logic.
So one logical size doesn’t fit all, but it’s even more interesting. A case can be made that the process that’s closest to a recognizable science is the form of reasoning called abduction which is more like what a detective does, at least in fiction. One reasons to the most likely conclusion. You do this all the time:
Suppose your car won’t start. There are a thousand reasons why that be the case: it could be fairies, it could be an evil spell, it could be a prank from your roommate (who’s always a pain), it could be that your battery is old and you listened to the radio last night after shutting off the engine, it could be that you’re out of gas. Because of a variety of experiences you’ve had regarding mystical creatures, magic, the fact that your roommate is out of town, how batteries are rumored to work, and that you’d filled your tank the day before would cause you to abduct to the conclusion that your battery is probably discharged because of its age. Abduction is the most recognizable form of reasoning that scientists generally engage in. It involves expertise, it is not iron-clad (you could have a leak in your gas tank), and it’s not based on a string of observations like brown squirrels.
Was Sherlock Holmes the Master of Deduction? Nope. He was the Master of Abduction.
Can you imagine that it’s hard to be sure? Absolutely, without a shadow of a doubt, sure about something that’s discovered in nature? We cannot be. The assumption about frogs and coffee pots might have come from an abductive process, and a chain of deductive logic might lead you to a conclusion that you’d like to declare is a true statement about nature. But we’d have been wrong.
We’ll see below that what we test are models of nature. The consequences of a model are deductive in that the chain of reasoning leads from assumptions to what should happen in the future—a prediction. It’s those pesky assumptions that make the whole process contingent and impermanent: no absolute truth and certainly no proof. I’ll leave you with this:
- Particles cannot go faster than the speed of light.
- Neutrinos are particles.
- Neutrinos cannot go faster than the speed of light.
Had we taken that first premise to be indisputable—true forever and ever and beyond questioning—then we would not have taken the Opera claim seriously. But that’s not how science works and not what the community did. We worked hard to find evidence that the first premise was not a fact (that maybe it was a black squirrel). We’re now more trusting of the conclusion about the speed of light which wouldn’t have occurred without that nervous year.
It is not possible to test a theory. We test models.
I’ve discarded Laws and truth and proof and so it’s time to confront the idea of a theory and how we can trust one or not. “What is a theory,” is a valid question.
Planes, Trains, and Automobiles: Models
When I was a kid, I was consumed by models of cars— “hot rods” of the 1960s. And airplanes. And HO train sets. In short, life-like replicas of transportation tools were my passion when I wasn’t playing or watching baseball.
A plastic model stands for—represents—a real thing in the world, not perfectly, but well enough to complete a mission. In my case, that mission was a 13 year old boy imagining the car that he’d work on and own some day. If my plastic 1967 Chevy with baby moon wheels, GM 350 cubes with aluminum heads, Edelbrock intake manifold, Holley 4bbl, HPC Coated Headers w/Dual Exhaust, painted baby blue was made more and more precise, it would eventually become…a real car.
I’ve been careful in what I wrote above to do two things. First, I referred to scientific statements and models of nature. Gone are the days when a physicist can construct a mathematical description of say a block of wood sliding down a plane of wood and proudly proclaim that what’s written in symbols on paper is a 1:1 faithful reproduction of what happens in the laboratory.
Now we operate from a more hazy, removed vantage point. As we get into electric and magnetic fields, relativity, and quantum mechanics the correspondence between a mathematical description and what nature is supposed to be like will become necessarily more indirect and abstract.
I now tend to think of a theory as a broad framework within which there are many ways to address nature from within the framework. But what we don’t do is test the theory, rather we build mathematical models that use the rules (from within the framework) of a theory to address a particular, well-defined piece of nature with predictions. Then experiments are done to test the model, not the theory.
Let’s pick on Special Relativity again. I can tell you the Theory of Relativity in these three lines:
- The rules of physics are the same in all inertial frames of reference.
- The speed of light is the same in all inertial frames of reference.
- The interval between two spacetime events is Minkowskian.
The first two statements are called the Postulates of Relativity and the last statement is a consequence of the mathematization of the theory in geometry.
This is the Theory of Relativity…the framework within which any scientific statement must fit. You don’t need to understand what these sentences mean, but you can surely see that they don’t contain a single mathematic equation. That’s where the models come in.
In my way of thinking, a mathematical model of nature is a little machine that you a result at the end when you add some information at the beginning. The result can be, and usually is, the prediction of what an experiment would find. That result can also be another equation, distilled from input equations.
We will use the Theory of Relativity above quite a bit, but our confrontation with nature will be through models that are built within the framework of the Theory of Relativity.
An important aspect of a model is that it must respect a possible measurement’s capabilities. A model is not meant to be a 1:1 representation of nature, just like the model car is not a real car. It’s a limited representation that can be tested. Here’s what I mean.
I can create a model for how fast a block will move across a table if it’s pushed with a given force. If that’s all I want to know, that’s a pretty easy thing to predict. But notice that it’s not the whole story of what goes on. The table and the block heat up and so energy is lost to the warming air. There are billions of little, complex atomic bonds between the under-surface of the block and the table-top. There’s a lot of physics involved in describing this event and how much detail I include in the model depends on a) what I want to know from my measurement and b) how well I need to know it. My model could include all of those thermodynamic and atomic effects but I wouldn’t include them if I can’t measure the speed very precisely.
Physicists learn to stick to the Goldilocks Rule of Modeling. A model can’t be too crude and a model can’t be too precise…a model needs to be Just Right.
To summarize:
- accept a theory and its rules; build mathematical models within the theory to represent nature (but not in a 1:1 sense);
- make predictions from those models and test them in experiments;
- accept or reject the model based on the results of the experiments.
That’s the game that I’ve played for four decades in which I’ve never left the theory of quantum mechanics, the theory of special relativity, nor the theory of general relativity…but I’ve tested lots of models.
Statements
It’s a detail, but an important one. We cannot test nature directly. We can only assess the truth or falsity only of statements. This reflects a remoteness of a scientist relative to nature itself. So a prediction and a test of that prediction is really testing statements and not theories and not nature. I confess this is hard to appreciate and I can probably argue even with myself about it.
In some ways, what an artist does when she paints a landscape is make a model of it. Representation theory is a serious part of “Semiotics” which is a sophisticated discipline in philosophy, linguistics, and aesthetics.
Memory Medicine: Confirmation and Disconfirmation
In my car I just heard an advertisement for a supplement that would make me remember things better. (I don’t remember its name…see what I did there?) It apparently has been “proven” to be effective. Well, by now you know my problems with that word, but what is it that scientists can actually say about a model and indirectly, the theory framework within which it functions?
The black squirrel issue makes it clear that proving, beyond a shadow of a doubt, that an inductive model is true is risky and historically unproductive.
- The word that we use when evidence supports a model’s prediction is “confirm“…the model’s prediction is confirmed, definately not “proved.”
- The word we use when a model’s prediction is contradicted is “disconfirmed.”
- The burden of any model is that it must be “falsifiable” or in principle be disconfirmable.
A couple of notes. “Confirm” is weaker than prove, leaving us the necessary freedom to allow that evidence can change our models and even theories. Those theories that I keep saying we trust? They have been confirmed many, many times. (It’s fair to think that maybe a Law is just a really, well-confirmed theory. But I’m fighting that older picture of Newtonian-like Laws.)
That last bullet is important and has a special place in the Philosophy of Science—and is the center of a couple of serious arguments in my fields of physics right now. <aside class="myaside">You might have heard some of this in the news and the falsifiability test of a theory (the word used then) is attributed to the philosopher, Karl Popper. He thought this was a worthy goal of science because showing something to be wrong is actually a deductive process, the inverse of showing that something agrees.</aside>
To a Popperian (my pejorative word) a single instance of disconfirmation should eliminate a model from study (they would say “theory”). A single black squirrel? That’s nice sounding, but not how science actually works and is philosophically troublesome (ask Mr Google about the Duhem–Quine thesis)–that black squirrel could have just been in a dust-bin.
The requirement of falsifiability as a standard required of science has pretty much stuck with us.
Can you see how this in-principle falsifiability requirement actually feeds my original assertion above about how to tell if a statement is scientific or not? The latter is just a simpler version of the former.
The bottom line here is this:
The burden on science is not to prove things about nature, but to confirm or disconfirm statements about nature.
In QS&BB, we’ll watch revolutions in science that create large frameworks in which models are tested, rejected, and accepted. These frameworks I will call theories and I can list them for you:
- Newton’s laws of motion (remember?)
- Newton’s law of Gravitation
- Maxwell’s Theory of Electromagnetism
- Quantum Mechanics
- Special Relativity Theory
- The General Theory of Relativity
In my picture, there are not many theories in physics.
Other topics like the big bang? quarks? nuclear physics? the standard model of particle physics? These are all models within the currently acceptable theories (frameworks) of 4, 5, and 6 above. Numbers 1 and 2? They’ve been replaced!
Laziness: Belief
One more word that both has no place in science but is one of those words we use all the time: Belief. We all talk about what we believe (and don’t), and scientists will sometimes colloquially do that in a scientific context, but that’s sloppy. When I say “I believe in X,” what I really mean is that that job that word does is act as a shorthand for the sentence: “X is highly confirmed by experiments and X is likely to survive foreseeable experimental tests if asked.” If I’m an expert in the field of X, then I have the obligation to describe those experimental tests. If I’m not an expert in X and I want to echo an expert’s “belief,” I should expect that expert could also enumerate its experimental successes in detail on my behalf. (That’s a little tricky.)
There are dos and don’ts here for scientists (and students of science). When it comes to belief in a scientific statement, I can’t do three things:
- I can’t say that I believe in X because I want to,
- I can’t say that I believe in X because my gut or a “feeling” suggests that I should, and
- I can’t say that I believe in X because just because a non-expert or an authoritative text tells me to. Likewise, I can’t say that I don’t believe in X for any of those same three reasons.
There is a reality “out there” and our understanding of it continuously improves.
For more than a decade, there has been a famous war between philosophers and physicists with prominent physicists claiming that little or none of what philosophers of science have said has had any effect on science. The Nobel physicist from the University of Texas, Stephen Weinberg is both a prolific scientist, but also a writer of non-specialist books, the most famous being The First Three Minutes. One of his later books for the public is Dreams of a Final Theory and his last chapter is called Against Philosophy where he notes, “I know how philosophers feel about attempts by scientists at amateur philosophy. But I do not aim here to play the role of a philosopher, but rather that of a specimen, an unregenerate working scientist who finds no help in professional philosophy. I am not alone in this; I know of no one who has participated actively in the advance of physics in the postwar period whose research has been significantly helped by the work of philosophers.”
One of the more disturbing ways in which philosophy of science has drifted is in the denial of the project of science as learning about the physical world. Rather, science is deemed to be a social activity without the ability